Skip to content

A Tensorflow 2.0 reimplementation of World Models - David Ha, Jürgen Schmidhuber (2018)

Notifications You must be signed in to change notification settings

ADGEfficiency/world-models

Repository files navigation

World Models

A Tensorflow 2.0 re-implementation of the 2018 classic paper World Models by David Ha & Jürgen Schmidhuber.

Blog post - resources and references.

Using a pretrained agent

Download the pretrained vision, memory and controller (generation 229):

$ bash tf-cpu-setup.sh
$ bash pretrained.sh

To render fully, run the notebook worldmodels/notebooks/render.ipynb.

To sample data from the controller into .npy files in ~/world-models-experiments/controller-samples (used for checking agent performance across random seeds):

$ python worldmodels/data/sample_policy.py --policy controller --dtype numpy --episode_length 1000 --num_process 4 --episodes 200 --generation 229

To sample from the controller into .tfrecord files in ~/world-models-experiments/controller-samples (used to generate training data for the next iteration of agent):

$ python worldmodels/data/sample_policy.py --policy controller --dtype tfrecord --episode_length 1000 --num_process 4 --episodes 200 --generation 229

Training from scratch

Sample data using a random policy

A dataset is generated by from the environment using a random policy - data is placed into $HOME/world-models-experiments/random-rollouts. The original paper uses 10,000 total episodes, with a max episode length of 1,000. The dataset generation is parallelized using Python's multiprocessing.

To run the dataset generation (tested on Ubuntu 18.04.2 - c5.4xlarge 512 GB storage):

$ bash gym-setup.sh
$ xvfb-run -a -s "-screen 0 1400x900x24 +extension RANDR" -- python3 worldmodels/data/sample_policy.py --num_process 8 --total_episodes 10000 --policy random
$ aws s3 sync ~/world-models-experiments/random-rollouts/ s3://world-models/random-rollouts

Training the Variational Auto-Encoder (VAE)

Original paper uses 1 epoch, the code based supplied uses 10.

The autoencoder saves a copy of the model into ~/world-models-experiments/vae-training/models. Run on GPU:

Run on Ubuntu 18.04.02, p3.2xlarge 512 on AWS:

$ source tf-setup.sh
$ before_reboot
$ source tf-setup.sh
$ after_reboot
$ aws s3 sync s3://world-models/random-rollouts ~/world-models-experiments/random-rollouts
$ python3 worldmodels/vision/train_vae.py --load_model 0 --data local
$ aws s3 sync ~/world-models-experiments/vae-training s3://world-models/vae-training

The following two commands are useful at this stage - to track the GPU:

$ nvidia-smi -l 1

And to track the training:

$ tail -f ~/world-models-experiments/vae-training/training.csv

Sampling latent statistics

Sample the statistics (mean & variance) of the VAE so we can generate more samples of the latent variables. Run on CPU:

$ bash tf-cpu-setup.sh
$ aws s3 sync s3://world-models/vae-training/models ~/world-models-experiments/vae-training/models
$ python3 worldmodels/data/sample_latent_stats.py --episode_start 0 --episodes 10000 --data local --dataset random
$ aws s3 sync ~/world-models-experiments/latent-stats  s3://world-models/latent-stats

Training LSTM Gaussian mixture

Run on GPU, p3.2xlarge instance on AWS:

#  load before & after reboot from tf-setup
$ source tf-setup.sh
$ before_reboot
$ after_reboot
$ python3 worldmodels/memory/train_memory.py
$ aws s3 sync ~/world-models-experiments/memory-training  s3://world-models/memory-training

Training the CMA-ES linear controller

$ aws s3 sync s3://world-models/vae-training/models/ ~/world-models-experiments/vae-training/models
$ aws s3 sync s3://world-models/memory-training/models/ ~/world-models-experiments/memory-training/models
$ xvfb-run -a -s "-screen 0 1400x900x24 +extension RANDR" -- python3 worldmodels/control/train_controller.py
$ aws s3 sync ~/world-models-experiments/control/ s3://world-models/control

The following command is useful at this stage - to folllow the reward logs:

$ tail -f ~/world-models-experiments/control/rewards.log

Training the second generation

The process for training the second iteration of the agent is given below.

This data is sampled from a controller, not a random policy.

$ xvfb-run -a -s "-screen 0 1400x900x24 +extension RANDR" -- python3 worldmodels/data/sample_policy.py --num_process 8 --total_episodes 10000 --policy controller --dtype tfrecord
$ python3 worldmodels/vision/train_vae.py --load_model 0 --data local --epochs 15 --dataset controller
$ python3 worldmodels/data/sample_latent_stats.py --episode_start 0 --episodes 10000 --data local --dataset controller
$ python3 worldmodels/memory/train_memory.py --load_model 0 --epochs 80
$ xvfb-run -a -s "-screen 0 1400x900x24 +extension RANDR" -- python3 worldmodels/control/train_controller.py
$ aws s3 sync ~/world-models-experiments/control/ s3://world-models/control

About

A Tensorflow 2.0 reimplementation of World Models - David Ha, Jürgen Schmidhuber (2018)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published