Skip to content
/ unilm Public
forked from microsoft/unilm

UniLM - Unified Language Model Pre-training / Pre-training for NLP and Beyond

License

Notifications You must be signed in to change notification settings

Agito555/unilm

 
 

Repository files navigation

UniLM

Pre-trained models for natural language understanding (NLU) and generation (NLG) tasks

The family of UniLM:

UniLM (v1@NeurIPS'19 | v2@ICML'20): unified pre-training for language understanding and generation

InfoXLM (v1@NAACL'21): multilingual/cross-lingual pre-trained models for language understanding and generation

MiniLM (v1@NeurIPS'20): small and fast pre-trained models for language understanding and generation

AdaLM (NEW): domain, language, and task adaptation of pre-trained models

LayoutLM (v1@KDD'20 | v2): multimodal (text + layout/format + image) pre-training for document understanding (e.g. scanned documents, PDF, etc.)

LayoutXLM (NEW): multimodal (text + layout/format + image) pre-training for multilingual document understanding

s2s-ft: sequence-to-sequence fine-tuning toolkit

XLM-T (NEW): Multilingual NMT w/ pretrained cross-lingual encoders

News

  • April, 2021: LayoutXLM is coming by extending the LayoutLM into multilingual support! A multilingual form understanding benchmark XFUN is also introduced, which includes forms with human labeled key-value pairs in 7 languages (Chinese, Japanese, Spanish, French, Italian, German, Portuguese).
  • March, 2021: InfoXLM was accepted by NAACL 2021.
  • December 29th, 2020: LayoutLMv2 is coming with the new SOTA on a wide varierty of document AI tasks, including DocVQA and SROIE leaderboard.
  • October 8th, 2020: T-ULRv2 (aka InfoXLM) as the SOTA on the XTREME leaderboard. // Blog
  • September, 2020: MiniLM was accepted by NeurIPS 2020.
  • July 16, 2020 (NEW): InfoXLM (Multilingual UniLM) arXiv
  • June, 2020: UniLMv2 was accepted by ICML 2020; LayoutLM was accepted by KDD 2020.
  • April 5, 2020: Multilingual MiniLM released!
  • September, 2019: UniLMv1 was accepted by NeurIPS 2019.

Release

***** New February, 2020: UniLM v2 | MiniLM v1 | LayoutLM v1 | s2s-ft v1 release *****

  • LayoutLM 1.0 (February 18, 2020): pre-trained models for document (image) understanding (e.g. receipts, forms, etc.) . It achieves new SOTA results in several downstream tasks, including form understanding (the FUNSD dataset from 70.72 to 79.27), receipt understanding (the ICDAR 2019 SROIE leaderboard from 94.02 to 95.24) and document image classification (the RVL-CDIP dataset from 93.07 to 94.42). "LayoutLM: Pre-training of Text and Layout for Document Image Understanding KDD 2020"
  • s2s-ft 1.0 (February 26, 2020): A PyTorch package used to fine-tune pre-trained Transformers for sequence-to-sequence language generation. "s2s-ft: Fine-Tuning Pre-Trained Transformers for Sequence-to-Sequence Learning"
  • MiniLM 1.0 (February 26, 2020): deep self-attention distillation is all you need (for task-agnostic knowledge distillation of pre-trained Transformers). MiniLM (12-layer, 384-hidden) achieves 2.7x speedup and comparable results over BERT-base (12-layer, 768-hidden) on NLU tasks as well as strong results on NLG tasks. The even smaller MiniLM (6-layer, 384-hidden) obtains 5.3x speedup and produces very competitive results. "MiniLM: Deep Self-Attention Distillation for Task-Agnostic Compression of Pre-Trained Transformers NeurIPS 2020"
  • UniLM 2.0 (February 28, 2020): unified pre-training of bi-directional LM (via autoencoding) and sequence-to-sequence LM (via partially autoregressive) w/ Pseudo-Masked Language Model for language understanding and generation. UniLM v2 achieves new SOTA in a wide range of natural language understanding and generation tasks. "UniLMv2: Pseudo-Masked Language Models for Unified Language Model Pre-Training ICML 2020"
  • LayoutLM 2.0 (December 29, 2020): multimodal pre-training for visually-rich document understanding by leveraging text, layout and image information in a single framework. It is coming with new SOTA on a wide range of document understanding tasks, including FUNSD (0.7895 -> 0.8420), CORD (0.9493 -> 0.9601), SROIE (0.9524 -> 0.9781), Kleister-NDA (0.834 -> 0.852), RVL-CDIP (0.9443 -> 0.9564), and DocVQA (0.7295 -> 0.8672). "LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding"
  • LayoutXLM (April, 17, 2021): multimodal pre-training for multilingual visually-rich document understanding. The pre-trained LayoutXLM model has significantly outperformed the existing SOTA cross-lingual pre-trained models on the FUNSD and multilingual XFUN dataset including 7 languages (Chinese, Japanese, Spanish, French, Italian, German, Portuguese).

***** October 1st, 2019: UniLM v1 release *****

License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree. Portions of the source code are based on the transformers project.

Microsoft Open Source Code of Conduct

Contact Information

For help or issues using UniLM, please submit a GitHub issue.

For other communications related to UniLM, please contact Li Dong (lidong1@microsoft.com), Furu Wei (fuwei@microsoft.com).

About

UniLM - Unified Language Model Pre-training / Pre-training for NLP and Beyond

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%