A unified segmentation microservice SDK that enables any Trimble product to detect and segment Trimble equipment in images using AI-powered visual intelligence.
The Trimble Visual Intelligence API provides a standardized way for all Trimble products (Connect, SiteVision, Ag Software, etc.) to:
- Detect Trimble equipment in images (excavators, GPS receivers, total stations, tractors, scanners)
- Segment objects with pixel-perfect masks
- Return standardized metadata (bounding boxes, masks, categories, coverage stats)
- Export results in multiple formats (PNG, JSON, ZIP)
One API. All Trimble Products. Instant Equipment Detection.
- Node.js (v16 or higher)
- Gemini API key (Get one here)
# 1. Install dependencies
npm install
# 2. Configure API key
# Windows (PowerShell):
Set-Content -Path ".env.local" -Value "GEMINI_API_KEY=your_actual_api_key_here"
# Mac/Linux:
echo "GEMINI_API_KEY=your_actual_api_key_here" > .env.local
# Then edit .env.local and replace 'your_actual_api_key_here' with your real key
# Get API key from: https://aistudio.google.com/app/apikey
# 3. Run development server
npm run dev
Open browser: http://localhost:3000
- Upload Image - Click "Upload Image" or select example
- Specify Equipment - Enter Trimble products to detect (e.g., "excavator with GPS, R12 receiver")
- Detect & Segment - Click button to run AI detection
- Export Results - Download ZIP with PNG visualization + JSON metadata
{
"timestamp": "2025-10-09T02:00:00Z",
"api_version": "1.0.0",
"detections": [
{
"id": 1,
"product": "Trimble R12 GNSS Receiver",
"category": "positioning",
"bounding_box": {"x": 0.2, "y": 0.3, "width": 0.4, "height": 0.5},
"mask_data": "data:image/png;base64,...",
"metadata": {
"area_pixels": 45000,
"coverage_percent": 12.5
}
}
]
}
Construction: Auto-inventory job sites, safety compliance, progress tracking
Surveying: Equipment verification, setup QC, field documentation
Agriculture: Fleet tracking, GPS system adoption, equipment compliance
Enterprise: Cross-site visibility, asset management, analytics
See TRIMBLE_USE_CASES.md for 100+ detailed use cases.
src/
├── components/ # UI components
├── services/ # State management (Jotai)
├── config/ # Trimble products catalog & prompts
├── types/ # TypeScript definitions
├── utils/ # Export & utility functions
└── styles/ # Trimble enterprise theme
# Development server
npm run dev
# Production build
npm run build
# Preview production build
npm run preview
Construction: Earthworks, Siteworks, Machine Control, SiteVision, FieldLink, Stratus
Positioning: R12i, R12, R10, R2, R780, R750 receivers, Base stations, Antennas, Catalyst
Surveying: S9, S7, S5, VX, SX10, SX12 stations, TSC7/TSC5/TSC3, T10/T7 tablets
Agriculture: Autopilot, NAV-900, NAV-500, EZ-Pilot, CFX-750, GFX-750, GFX-350, FMX, WeedSeeker 2
Geospatial: X7, X12, TX8, TX6 scanners, MX9, MX7, MX2 mapping, UX5, ZX5 drones
Software: Connect, Business Center, Access, RealWorks, eCognition, TILOS, Quantm
MEP: SysQue, AutoBid, Accubid
Transportation: Dock & Yard Management, Smart Workflow, TruETA, Freight Procurement
Railway: GEDO CE, GEDO IMS, GEDO Scan
Accessories: Survey poles, prisms, tribrachs, tripods
// Upload image and detect equipment
const response = await fetch('/api/detect', {
method: 'POST',
body: formData
});
const results = await response.json();
// Returns: segmentation masks + metadata
Proof Of Concept - Demonstrating unified visual intelligence across Trimble product ecosystem
Contact: Team Falcon