Skip to content

Implementation of DCIL-II based on jax-based XPAG library

Notifications You must be signed in to change notification settings

AlexandreChenu/DCIL_XPAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DCIL_XPAG

Implementation of DCIL-II based on jax-based XPAG library.

How does it work

Paper

Install

  1. Clone DCIL repo,
git clone https://github.com/AlexandreChenu/DCIL_XPAG.git
  1. Create virtual environment dcil_env from environment.ylm,

If you want to use Mujoco environments (Fetch + Humanoid locomotion & standup):

cd DCIL_XPAG
conda env create --name dcil_env --file environment.yml

If you want to use Cassie envionments check this Repo for installation.

If you want to use PyBullet environments:

cd DCIL_XPAG
conda env create --name dcil_env_pybullet --file environment_pybullet.yml
  1. Clone + install XPAG (+ Jax),
git clone https://github.com/perrin-isir/xpag.git
cd xpag
git checkout 9ef7dd74b74fc71cee83c6a476adfebe4b977814
pip install -e .

Check this Repo for instructions.

  1. Install physical simulators,

Mujoco

PyBullet

Brax

  1. Clone + install maze or humanoid environments
git clone https://github.com/AlexandreChenu/gmaze_dcil.git

OR

git clone https://github.com/AlexandreChenu/ghumanoid_dcil.git

and

cd <env_directory>
pip install -e .

Run Dubins Experiment

python test_DCIL_variant_XPAG_v4.py --demo_path ./demos/dubins_convert/1.demo --save_path /path/to/save/path

Run Humanoid Experiment (Mujoco version)

python test_DCIL_variant_XPAG_humanoid_v4.py --demo_path ./demos/humanoid_convert/1.demo --save_path <path_to_results_directory> --eps_state 0.5  --value_clipping 1

(learns sequential goal reaching with less than 1m training steps)

Run Cassie Experiment

python test_DCIL_variant_XPAG_cassie_v5.py --demo_path ./demos/cassie_convert/1.demo --save_path <path_to_results_directory> --eps_state 0.5  --value_clipping 1

WORK IN PROGRESS - Run Humanoid Experiment (PyBullet version)

python test_DCIL_variant_XPAG_humanoid_walk_PB_v4.py --demo_path <path_to_this_directory>/demos/humanoid_PB_walk/ --save_path <path_to_results_directory> --eps_state 0.2  --value_clipping 1

(not working at the moment. Code running but no skill learning)

NOTE: PyBullet installation requires python==3.8

Visual logs produced in /path/to/save/path

  • trajs_it_- : training rollouts + skill-chaining evaluation + success goals sets
  • value_skill_-it- : value for x-y position of skill starting state for different orientations
  • transitions_- : sampled training transitions + segment between true desired goal and relabelled desired goal

Learned behaviors

Humanoid Locomotion

Humanoid Stand-up

Cassie

About

Implementation of DCIL-II based on jax-based XPAG library

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages