Numerical analysis: solutions of ordinary differential equations with Matlab
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Failed to load latest commit information.
LICENSE
README.md
funccorazon.m
funcdispnolin.m
funcpendulo.m
funcpendulolin.m
funcrigida.m
funcvanderpol.m
fundisplin1.m
fundisplin2.m
jacrigida.m
jacvanderpol.m
miab4.m
miab4am3.m
midisplin.m
midisplingen.m
midispnolin.m
midispnolingen.m
mieuler.m
mieulertr.m
mimetadap.m
mimilne.m
mimilsimp.m
mirk4.m
mirkf45.m
misgraficas.m
mispracticas.m
mitrap.m
testmiab4.m
testmiab4am3.m
testmidisplin.m
testmidisplingen.m
testmidispnolin.m
testmidispnolingen.m
testmieuler.m
testmieulertr.m
testmimetadap.m
testmimilne.m
testmimilsimp.m
testmiode45.m
testmirk4.m
testmirkf45.m
testmitrap.m

README.md

ODE

Numerical analysis: solutions of ordinary differential equations with Matlab. This project was developed during a university course (Numerical methods) in 2015-2016. Comments are in Spanish, except in mispracticas.m, where the comments are in English.

##Functions

funccorazon.m - Cardioid

funcvanderpol.m - Van der Pol oscillator

funcpendulo.m - Pendulum

funcpendulolin.m - Lineal pendulum

##Auxiliar modules

mispracticas.m - in every line has an equation and its input values

misgraficas.m - to paint the solution

##Initial value problems

###One-step methods

mieuler.m - Euler method

mirk4.m - fourth-order Runge-Kutta

mitrap.m - Trapezoidal method

jacrigida - Jacobian matrix of the equation x'(t) = -50(x(t)-cos(t)) to be used in mitrap.m

jacvanderpol - Jacobian matrix of the Van der Pol oscillator equation to be used in mitrap.m

###Multistep methods

miab4.m - 4-step Adams-Bashforth method

mimilne.m - 4-step Milne method

###Predictor–corrector methods

mieulertr.m - Predictor: Euler method, Corrector: Trapezium method

miab4am3.m - Predictor: 4-step Adams-Bashforth method, Corrector: 3-step Adams-Moulton method

mimilsimp.m - Predictor: 4-step Milne method, Corrector: 2-step Simpson method

###Adaptive algorithms

mimetadap.m - Using a one-step method

mirkf45.m - Runge-Kutta-Fehlberg method

##Boundary value problems

###Linear boundary value problem

midisplin.m - linear boundary value problems for several types of boundary conditions

fundisplin1.m - ordinary differential equation used in midisplin.m

fundisplin2.m - ordinary differential equation used in midisplin.m

###Nonlinear boundary value problem

midispnolin.m - nonlinear boundary value problems for several types of boundary conditions: Dirichlet and Neumann

midispnolingen.m - generalization of midispnolin.m which can be use for more types of boundary conditions: Robin

funcdispnolin.m - used in midispnolin.m and midispnolingen.m

##Tests

All of them use the input values and function from mispracticas.m, use a method to solve the problem and misgraficas.m to paint the solution

testmiode45.m - Use Matlab function ode45

testmieuler.m - Use mieuler.m

testmirk4.m - Use mirk4.m

testmitrap.m - Use mitrap.m

testmiab4.m - Use miab4.m

testmimilne.m - Use mimilne.m

testmieulertr.m - Use mieulertr.m

testmiab4am3.m - Use miab4am3.m

testmimilsimp.m - Use mimilsimp.m

testmimetadap.m - Use mimetadap.m

testmirkf45.m - Use mirkf45.m

testmidisplin.m - Use midisplin.m

testmidispnolin.m - Use midispnolin.m

Authors

This project was developed by Ana María Martínez Gómez.

Licence

Code published under MIT License (see LICENSE).