Skip to content
/ aChor Public

Task oriented data classification for choropleth maps

Notifications You must be signed in to change notification settings

Ariel505/aChor

Repository files navigation

aChor

aChor

Task oriented data classification for choropleth maps (German Research Foundation funded)

This plugin aChor was designed only for polygon shapefile dataset
  You may download a test dataset here:  http://tiny.cc/xspc0y

The method of the algorithm: https://tinyurl.com/y99tk8gx

Your default aChor plugin directory is located at:
  Windows QGIS3:  C:/OSGeo4W/apps/qgis/python/plugins/aChor
  Linux QGIS3:        /home/user_name/.local/share/QGIS/QGIS3/profiles/default/python/plugins/aChor

Before you deploy the plugin:

  • This plugin using fiona, shapely, gdal, pysal and Rtree libraries.
  • Rtree must be version 0.8.3 or above.
  • Pysal must be version 1.14.4 or below. (python -m pip install pysal==1.14.3 --user)
  • To install python packages, please using pip or easy_install in OSGEO4W shell.
  • Using requirements.txt install file: sudo -H python -m pip install -r requirements.txt
  • Step by step installation:
  1. Linux:
    sudo wget http://ftp.de.debian.org/debian/pool/main/p/python-rtree/python-rtree_0.8.3+ds-1_all.deb
    sudo apt install /filedir/python-rtree_0.8.3+ds-1_all.deb
  2. Windows: python -m pip install Rtree-0.8.3-cp36-cp36m-win_amd64.whl
    For windows python packages, you may download them here:http://www.lfd.uci.edu/~gohlke/pythonlibs/#fiona
  • Check if libraries successfully installed, open the OSGEO4W shell and try to import them.
    C:\> py3_env
    C:\> python
    >>> import rtree
    >>> import fiona
    >>> import shapely
    >>> import pysal
    >>> import sklearn
    >>> import dbf

Notes:

  • GitHub for bug report and tracking: https://github.com/Ariel505/aChor/issues/
  • You can also run the classification from OSGeo4W command shell.

    Usage: 
    python  class_achor.py  [class_num]  [sweep_interval]  [field_name]  [shapefile]  [method]

    [Method]:
    1:  Localextremes (max and min)
    2:  Localmax
    3:  Localmin
    4:  Hotspot and coldspot
    5:  Neighbors
    6:  Clusters
    7:  Global extremes
    8:  Nested pattern

    for example:
    python  class_achor.py  10  0.2  SUMME  Hamburg.shp  -m  1

Official QGIS Plugin Repository - for QGIS2 and QGIS3 https://plugins.qgis.org/plugins/aChor/

For more information on aChor project, please visit aChor project website for further information.

License Information, 2018-2021: Lab for Geoinformatics and Geovisualization (g2lab), Hafencity University Hamburg, Germany

About

Task oriented data classification for choropleth maps

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published