-
Notifications
You must be signed in to change notification settings - Fork 278
Merge evolved artificial neural network strategy #773
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
58915cc
ff6bc7d
6c16832
817760a
cbfd20c
70e85c1
0ed2db5
22caaea
0c103df
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,230 @@ | ||
# Source: https://gist.github.com/mojones/550b32c46a8169bb3cd89d917b73111a#file-ann-strategy-test-L60 | ||
# Original Author: Martin Jones, @mojones | ||
|
||
from axelrod import Actions, Player, init_args | ||
|
||
C, D = Actions.C, Actions.D | ||
|
||
|
||
def split_weights(weights, input_values, hidden_layer_size): | ||
"""Splits the input vector into the the NN bias weights and layer | ||
parameters.""" | ||
number_of_input_to_hidden_weights = input_values * hidden_layer_size | ||
number_of_hidden_to_output_weights = hidden_layer_size | ||
|
||
input2hidden = [] | ||
for i in range(0, number_of_input_to_hidden_weights, input_values): | ||
input2hidden.append(weights[i:i + input_values]) | ||
|
||
start = number_of_input_to_hidden_weights | ||
end = number_of_input_to_hidden_weights + number_of_hidden_to_output_weights | ||
|
||
hidden2output = weights[start: end] | ||
bias = weights[end:] | ||
|
||
return (input2hidden, hidden2output, bias) | ||
|
||
|
||
class ANN(Player): | ||
"""A single layer neural network based strategy.""" | ||
name = 'ANN' | ||
classifier = { | ||
'memory_depth': float('inf'), | ||
'stochastic': False, | ||
'inspects_source': False, | ||
'makes_use_of': set(), | ||
'manipulates_source': False, | ||
'manipulates_state': False, | ||
'long_run_time': False | ||
} | ||
|
||
def activate(self, inputs): | ||
"""Compute the output of the neural network.""" | ||
# Calculate values of hidden nodes | ||
hidden_values = [] | ||
for i in range(self.hidden_layer_size): | ||
hidden_node_value = 0 | ||
bias_weight = self.bias_weights[i] | ||
hidden_node_value += bias_weight | ||
for j in range(self.input_values): | ||
weight = self.input_to_hidden_layer_weights[i][j] | ||
hidden_node_value += inputs[j] * weight | ||
|
||
# ReLU activation function | ||
hidden_node_value = max(hidden_node_value, 0) | ||
|
||
hidden_values.append(hidden_node_value) | ||
|
||
# Calculate output value | ||
output_value = 0 | ||
for i in range(self.hidden_layer_size): | ||
output_value += hidden_values[i] * \ | ||
self.hidden_to_output_layer_weights[i] | ||
|
||
return output_value | ||
|
||
@init_args | ||
def __init__( | ||
self, | ||
input_to_hidden_layer_weights=[], | ||
hidden_to_output_layer_weights=[], | ||
bias_weights=[] | ||
): | ||
|
||
Player.__init__(self) | ||
self.input_to_hidden_layer_weights = input_to_hidden_layer_weights | ||
self.hidden_to_output_layer_weights = hidden_to_output_layer_weights | ||
self.bias_weights = bias_weights | ||
|
||
self.input_values = len(input_to_hidden_layer_weights[0]) | ||
self.hidden_layer_size = len(hidden_to_output_layer_weights) | ||
|
||
def strategy(self, opponent): | ||
# Compute features for Neural Network | ||
# These are True/False 0/1 | ||
if len(opponent.history) == 0: | ||
opponent_first_c = 0 | ||
opponent_first_d = 0 | ||
opponent_second_c = 0 | ||
opponent_second_d = 0 | ||
my_previous_c = 0 | ||
my_previous_d = 0 | ||
my_previous2_c = 0 | ||
my_previous2_d = 0 | ||
opponent_previous_c = 0 | ||
opponent_previous_d = 0 | ||
opponent_previous2_c = 0 | ||
opponent_previous2_d = 0 | ||
|
||
elif len(opponent.history) == 1: | ||
opponent_first_c = 1 if opponent.history[0] == C else 0 | ||
opponent_first_d = 1 if opponent.history[0] == D else 0 | ||
opponent_second_c = 0 | ||
opponent_second_d = 0 | ||
my_previous_c = 1 if self.history[-1] == C else 0 | ||
my_previous_d = 0 if self.history[-1] == D else 0 | ||
my_previous2_c = 0 | ||
my_previous2_d = 0 | ||
opponent_previous_c = 1 if opponent.history[-1] == C else 0 | ||
opponent_previous_d = 1 if opponent.history[-1] == D else 0 | ||
opponent_previous2_c = 0 | ||
opponent_previous2_d = 0 | ||
|
||
else: | ||
opponent_first_c = 1 if opponent.history[0] == C else 0 | ||
opponent_first_d = 1 if opponent.history[0] == D else 0 | ||
opponent_second_c = 1 if opponent.history[1] == C else 0 | ||
opponent_second_d = 1 if opponent.history[1] == D else 0 | ||
my_previous_c = 1 if self.history[-1] == C else 0 | ||
my_previous_d = 0 if self.history[-1] == D else 0 | ||
my_previous2_c = 1 if self.history[-2] == C else 0 | ||
my_previous2_d = 1 if self.history[-2] == D else 0 | ||
opponent_previous_c = 1 if opponent.history[-1] == C else 0 | ||
opponent_previous_d = 1 if opponent.history[-1] == D else 0 | ||
opponent_previous2_c = 1 if opponent.history[-2] == C else 0 | ||
opponent_previous2_d = 1 if opponent.history[-2] == D else 0 | ||
|
||
# Remaining Features | ||
turns_remaining = self.match_attributes['length'] - len(self.history) | ||
total_opponent_c = opponent.history.count(C) | ||
total_opponent_d = opponent.history.count(D) | ||
total_self_c = self.history.count(C) | ||
total_self_d = self.history.count(D) | ||
|
||
output = self.activate([ | ||
opponent_first_c, | ||
opponent_first_d, | ||
opponent_second_c, | ||
opponent_second_d, | ||
my_previous_c, | ||
my_previous_d, | ||
my_previous2_c, | ||
my_previous2_d, | ||
opponent_previous_c, | ||
opponent_previous_d, | ||
opponent_previous2_c, | ||
opponent_previous2_d, | ||
total_opponent_c, | ||
total_opponent_d, | ||
total_self_c, | ||
total_self_d, | ||
turns_remaining | ||
]) | ||
if output > 0: | ||
return C | ||
else: | ||
return D | ||
|
||
|
||
class EvolvedANN(ANN): | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can we have more of a docstring here please.
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Perhaps also include a reference (in There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Yes to docstring, I think people should just google about neural networks. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Sure. |
||
""" | ||
A strategy based on a pre-trained neural network. | ||
|
||
Names: | ||
|
||
- EvolvedANN: : Original name by Martin Jones. | ||
""" | ||
|
||
name = "EvolvedANN" | ||
|
||
@init_args | ||
def __init__(self): | ||
self.classifier['makes_use_of'] = set(['length']) | ||
input_values = 17 | ||
hidden_layer_size = 10 | ||
|
||
weights = [0.19789658035994948, -5575.476236516673, 0.1028948855131803, 0.7421752484224489, | ||
-16.286246197005298, 11708.007255945553, 0.01400184611448853, -33.39126355009626, | ||
-12.755203414662356, -32.92388754142929, 197.3517717772447, 108262.87038790248, | ||
-0.1084768512582505, 85.20738888799768, 723.9537664890132, -2.59453614458083, | ||
0.5599936275978272, 7.89217571665664, -48014.821440080384, -1.364025168184463, | ||
-1.062138244222801, 11153713.883580556, -59.58314524751318, 51278.916519524784, | ||
3196.528224457722, -4635.771421694692, -129.93354968926164, -0.7927383528469051, | ||
98.47779304649353, -81.19056440190543, 29.53082483602472, -48.16562780387682, | ||
49.40755170297665, 288.3295763937912, -68.38780651250116, -167.64039570334904, | ||
-0.1576073061122998, 160.6846658333963, 34.55451693336857, -0.08213997499783675, | ||
-4.802560347075611, -1.4042000430302104, -0.9832145174590058, 0.008705149387813573, | ||
14.041842191255089, 0.05395665905821821, -0.13856885306885558, 5.311455433711278, | ||
-5.835498171845142, 0.00010294700612334848, 26.42528200366623, 33.690839945794785, | ||
7.931017950666591, -0.00037662122944226125, 59.295075951374606, -0.15888507169191035, | ||
3.670332254391659, 789.6230735057893, -0.7367125124436135, -198.44119280589902, | ||
537.9939493545736, -287.54344903637207, 1759.5455359353778, -18.48997020629342, | ||
-8426184.81603275, -82.36805426730088, 1144.1032034358543, 15635.402592538396, | ||
3095.643889329041, 2332.107673930774, -0.5601648316602144, 101.98300711150003, | ||
-7387.135294747112, -4241.004613717573, 3.06175607282536e-05, -35122.894421260884, | ||
-38591.45572476855, -0.16081285130591272, -29608.73087879185, 122.47563639056185, | ||
6.381946054740736, -0.8978628581801188, 17658.47647781355, -0.011719257684286711, | ||
0.10734295104044986, -378.35448968529494, 225.06912279045062, -351.12326495980847, | ||
-1.927322672845826, 0.0014584395475859544, -8.629826916169318, 22.43281153854352, | ||
87.10895591188721, -0.22253937914423294, -233.06796470563208, -620.4917481128365, | ||
-1.8253699204909606,-0.0030318160426064467, -77.25818476745101, -2057.311059352977, | ||
3.764204074005541, -47.47629147374066, 233.16096124330778, -160721.96744375565, | ||
-278292.9688140893, -2.093640525920404, -142886.66171202937, 53.64449245132945, | ||
12.5162147724691, -207.75462390139955, 132167.659160016, 21.197418541051732, | ||
83979.45623573882, -49.47558832987566, 0.05242625398046057, -842.1484416713075, | ||
-0.1581049310461208, 2359.2124343564096, 1170.5147830681053, -847999.9145843558, | ||
-0.8053911061885284, -5363.722820739466, 171.58433274294117, -724.7468082647013, | ||
2500359.853524033, 1595.3955511798079, -4.254009123616706, -171.12968391407912, | ||
-32.30624102753424, -558.412338112568, -234.29754199019308, -18768.34057250429, | ||
8338.792126484348, -0.18593140210730602, -7.758804964874875, 0.39736677884665267, | ||
547.0567585452197, 1.1969366369973133, 0.4861465741177498, -51.19319208716985, | ||
12.775051406025534, -0.09185362260212569, 22.08417300332754, -5090.013231748707, | ||
-0.814394991797045, 1.1534025840023847, 8.390439959276764, -0.02227253403481858, | ||
0.14162040507921927, -0.011508263843203926, 0.22372493104861083, 0.7754713610627112, | ||
0.1044033140236981, -4.377055307648915, -41.898221495326574, -18656.755601828827, | ||
-134.56719406539244, -2405.8148785743474, 16864.049985157206, -0.5124682025216784, | ||
14521.069005125159, -10.740782200739309, 18756.807715014013, -1723.9353962656946, | ||
87029.99828299093, 5.7383786020894195e-05, 4762.960401619296, 0.7331769713238158, | ||
-308.5673034493341, 85.29725765515369, 0.4268843538235295, -0.17788805472511407, | ||
-1.1727033611646802, 7578.6822604990175, 0.5124673187864222, 0.1595627909684813, | ||
-145.93742731401096, -2954.234440189563, 0.009672881359732015, 106.4646644917487, | ||
-0.050606976105730346, 2.3904047264403596, -4.987645640997455, -43.22984692765006, | ||
-36.177108409134966, -0.3812547430698569, -2959.4921368963633, -1.8635802741029985, | ||
0.020513128847167047, -0.9179124323385958] | ||
|
||
(i2h, h2o, bias) = split_weights( | ||
weights, | ||
input_values, | ||
hidden_layer_size | ||
) | ||
ANN.__init__(self, i2h, h2o, bias) |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
"""Test for the Adaptive strategy.""" | ||
|
||
import axelrod | ||
|
||
from .test_player import TestHeadsUp, TestPlayer | ||
|
||
C, D = axelrod.Actions.C, axelrod.Actions.D | ||
|
||
|
||
class TestEvolvedANN(TestPlayer): | ||
|
||
name = "EvolvedANN" | ||
player = axelrod.EvolvedANN | ||
expected_classifier = { | ||
'memory_depth': float('inf'), | ||
'stochastic': False, | ||
'makes_use_of': set(["length"]), | ||
'long_run_time': False, | ||
'inspects_source': False, | ||
'manipulates_source': False, | ||
'manipulates_state': False | ||
} | ||
|
||
def test_strategy(self): | ||
# Test initial play sequence | ||
self.first_play_test(C) | ||
|
||
|
||
class TestEvolvedANNvsCooperator(TestHeadsUp): | ||
def test_rounds(self): | ||
self.versus_test(axelrod.EvolvedANN(), axelrod.Cooperator(), | ||
[C, D, D, C, D], [C] * 5) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Could we throw in a couple more? (Just to ensure we have some more variety). There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. sure |
||
|
||
|
||
class TestEvolvedANNvsDefector(TestHeadsUp): | ||
def test_rounds(self): | ||
self.versus_test(axelrod.EvolvedANN(), axelrod.Defector(), | ||
[C, D, D, D, D], [D] * 5) | ||
|
||
class TestEvolvedANNvsTFT(TestHeadsUp): | ||
def test_rounds(self): | ||
self.versus_test(axelrod.EvolvedANN(), axelrod.TitForTat(), | ||
[C, D, D, C, C], [C, C, D, D, C] * 5) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can we add a test for the case of a match when the match length is unknown? (Just to make sure this doesn't fall over).
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
The heads up tests don't supply the match length.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
We should train a separate strategy that only uses the round number though.