Skip to content

It contains all materials and lectures of Data science course

Notifications You must be signed in to change notification settings

Azhad56/Python_Noida

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data-Noida-2019-Dec

Course Code and Content for Data Science Batch of Dec 2019

Lecture 1

  • Introduction to datatypes : int, float, boolean
  • Iterables, Statements
  • Basics of file handling, accessing web urls using "requests" module.

Lecture 2

  • Introduction to functions, map, lambda, filter
  • Brief intro to Lists and Tuples
  • Basics of using Markdown

Lecture 3

  • Introduction to Dictionary and Sets
  • Lists functions : copy, append, extend, count, index, pop, remove
  • Tuple functions : append, immutability, copy, hashability
  • Markov Chains

Lecture 4

  • Introduction to numpy liberary : size, shape, dtype, array, full, reshape, ones, zeroes
  • Concepts of numpy and matplotlib
  • Introduction to PIL liberary

Lecture 5

  • Editing images with PIL
  • Overlaying images
  • Intoduction to Object Oriented Programming : Human/Hitman classes

Lecture 6

  • Accessing private members or methods of a class
  • Inheritance in OOPs

Lecture 7

  • Introduction to Stacks
  • Stack functions, Dynamic Stacks

Lecture 8

  • Introduction to Queues
  • Circular Queues
  • Stack using Queues : Add efficient, Remove efficient
  • Dynamic Queues

Lecture 9

  • Introduction to bs4
  • Processing url links, web scraping using module "BeautifulSoup"

Lecture 10

  • Introduction to Flask and templates
  • Creating and accessing a web form from the local PC

Lecture 11

  • Introduction to pandas
  • Creating Dataframes, converting file to csv/html
  • Operations on dataframes

Lecture 12

  • Building a facebook chatbot part-1

Lecture 13

  • Building a facebook chatbot part-2 (using pymessenger)

Lecture 14

  • Introduction to Database and SQL
  • Operations on Database using SQL
  • SQLAlchemy

Lecture 15

  • Introduction to Linked Lists
  • operations on LL : Insert/Delete at first,last or at a position
  • Introduction to Recursion

Lecture 16

  • Examples of Recursion
  • Using recursion to find string subsequences
  • Using recursion to find string permutaions
  • Building a Maze Game

Lecture 17

  • Using recursion to return number of string subsequences
  • Using recursion to return number of string subsequences
  • Dice Game using recursion
  • Finding LCS in two strings using recursion
  • Sorting an Array
  • Patterns

Lecture 18

  • Finding two sub-lists from a lists such that the sum of those two are equal.
  • nQueens problem
  • Returning list of all possible ways a Rat can get to the Food in an n*n matrix

Lecture 19

  • Building Sudoku using recursion
  • Returning all possible solutions for a Sudoku in a list
  • Merge Sort

Lecture 20

  • Binary Search Tree
  • Operations of BST : add, contains, display, height, sum, mirror

Lecture 21

  • Introduction to AVL Trees
  • Introduction to Graph

Lecture 22

  • Adjacency Graph
  • Traversal of Graph using Breadth First ,Depth First
  • Search of an element using Breadth First , Depth First

Lecture 23

  • Adjacency Graph with Connected Components and Bipartite
  • Introduction to Adjacency Map Graph

lecture 24

  • Dynamic Programming
  • Dp on Fibonacci Problem,Knapsack Problem,Dice Problem,Maze problem

Lecture 25

  • Numpy , Pandas and Matplotlib revisited
  • Advanced functionality of Numpy,Pandas and Matplotlib

Lecture 26

  • Introduction to Linear Regression
  • Implementation of Custom Linear Regression
  • Linear Regression on Non-linearly separable data

lecture 27

  • Introduction to Multiple Linear Regression
  • Implementation of Multiple Linear Regression

Lecture 28

  • Closed Form Solution of Linear Regression
  • Lowess
  • Introduction to Logistic Regression

Lecture 29

  • Implementation of Logistic Regression(Gradient Ascend algos used)
  • Logistic Regression (Dependent Variable contains more than 2 categories)

Lecture 30

  • Introduction to K-nearest Neighbours
  • Custom Knn
  • KNN on MNIST handwritten dataset (Lecture By Kunal Kushwaha)

Lecture 31

  • Face recognition
  • Rounding Video frame on another video frame
  • Selecting perticular area in video frame and making one of the layer 0
  • haarcascade_frontalface detection
  • Swapping largest size faces in video Frame
  • Detecting faces and storing gray face data in npy format

Lecture 32

  • Face recognition
  • Detecting faces and storing gray face data in npy format for face recognition
  • Detecting faces from training faces

Lecture33

  • Introduction to kmeans algorithm

Lecture34

  • Extracting Dominant colors using Kmeans

Lecture35

  • Titanic Data preprocessing
  • Entropy explained

Lecture36

  • Decison tree algorithm explained
  • Entropy and Information gain
  • Decison tree implementation
  • Random Forest classifier

Lecture37

  • Intro to Naive Bayes classifier
  • Mushroom Datasets
  • Custom Naivebayes classifier

Lecture38

  • Natural language processing
  • nltk library used
  • Tokenization,Corpus,Stopwords,CountVectorizer
  • Working with Modi ji ki speech

Lecture39

  • Flask Revised

Lecture40

  • computational graph with @tf.function
  • Linear Regression in Tensorflow

Lecture41

  • Logistic Regression in Tensorflow
  • Building Neural N/w
  • Adding layers to model
  • Deep learning notes
  • Imdb Movie Review classification

Lecture42

  • Adding Dense layer to Sequential model
  • Multi layer perceptron
  • Handling handdwritten mnist using neural networks
  • Deep learning intro notes
  • MLP's notes

Lecture43

  • Handling handdwritten mnist using neural networks

Lecture44

  • Normalisation on Boston Data
  • Performing EDA on Housing Price Data
  • Correlation term discussed
  • Reducing attributes which have high correlation

Lecture46

  • Autoencoders Explained(Mnist Data)
  • Principal component Analysis
  • PCA on Mnist Data

Lecture47

  • Intro to Convolutional neural networks
  • Max Pooling,Padding,Pooling
  • CNN notes(Blur Filter,Edge Filter,Activation Map,Mnist classification using cnn)

Lecture48

  • CNN case studies(Alexnet,Zfnet,Vgg,Google Inception Module)
  • Image Data generetor,ImageData augmentation,Pipeline
  • Transfer Learning
  • Transfer Learning Notes

Lecture49

  • Google word2vec Model
  • Finding Similiar colors using euclidean distance

Lecture50

  • Intro to RCNN
  • Classifying gender with names using embedding layer
  • Movie Rating Prediction

Lecture51

  • Reinforcement Learning
  • CartPole

Lecture52

  • Intro to Genetics Algo(Using Population examples)
  • Genereting similiar images

Lecture53

  • Support vector machine explained

Lecture54

  • Image Captioning(small flickr dataset)
  • Lstm model used

Lecture55

  • Scrapping and Crawling revised
  • Cb Team member photo scrapped

Lecture56

  • Sql Revised

Lecture57

  • Generetive adverserial networks

Lecture58

  • Time Series Analysis

Lecture59

About

It contains all materials and lectures of Data science course

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published