This repository contains LLMs use cases and studies
-
Create a virtual environnement:
python3.10 -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
-
Copy the env.template and fill your environment variables
cp .env.template .env
Help desk allows you to create a Question Answering bot in streamlit using your company Confluence data.
To run the streamlit app run:
cd use_cases/confluence_help_desk
streamlit run streamlit.py
Smartphone advisor is a LLM Chain Chat Bot that answer technical questions about tech products.
It uses a Chroma vector store from Youtube video extracted texts.
It follows the course by Andrew NG and Harrison Chase, Langchain CEO.
You will learn with this use case the following concepts:
- Character Text Splitter vs Recursive Character Text Splitter
- Maximum Marginal Relevance vs Semantic Search
- Chroma DB vs MyScale
- Contextual Compression & Self Query Retriever
- Stuff, Refine, Map Reduce & Map Rerank chain types
- Retrieval QA Chain vs Conversational Retrieval Chain
To run the streamlit app run:
cd use_cases/confluence_help_desk
streamlit run 7_streamlit_app.py