An interactive Streamlit app for projecting environmental data into PCA space to explore climate patterns, detect anomalies, and visualize trends. Designed for unsupervised workflows where labeled outcomes (like fire risk) are unavailable.
- Input up to 12 environmental variables via sidebar
- Project data into PCA space using a trained model
- Visualize PCA coordinates and compare with historical data
- Upload CSVs for batch projection
- Optional clustering and anomaly detection modules
- Download PCA-transformed results
- Python 3.8+
- Streamlit
- scikit-learn
- pandas
- joblib
app.py
— Streamlit interfacefeature_selection.py
— Selects high-variance featuressave_selected_features.py
— Saves selected features and PCA modelselected_features.pkl
— Saved feature listpca_model.pkl
— Trained PCA modelclimate_risk_dataset.csv
— Input datasetpca_transformed.csv
— Optional historical PCA datarequirements.txt
— Python dependencies
pip install -r requirements.txt
streamlit run app.py