Skip to content

BlankCheng/FMNet.pytorch-DeepFunctionalMap

Repository files navigation

FMNet.pytorch

A pytorch implementation of Deep Functional Maps (FMNet).

Introduction

This is a pytorch implementation of Deep Functional Maps. Groundtruth labels of FAUST correspondence are not used. For efficiency, 2048 points are randomly sampled from 6890 points on original meshes. The results may not be bijective.

Update: Visualization pairs of KeyPointNet are post-processed by PMF to be bijective, while faust pairs are not.

Usage

Build shot calculator:

cd utils/shot
cmake .
make

Calculate eigenvectors, geodesic maps, shot descriptors of trained models, save in .mat format:

python preprocess.py

Train:

python train.py --dataset=faust

Test(temporarily use trained data to test, for visualization):

python test.py --dataset=faust --model_name=epoch300.pth

Visualize correspondence:

python visualize.py

Visualization

pair1 pair2 pair3 pair4

About

A pytorch implementation of Deep Functional Map (FMNet).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published