Skip to content

FaceNet is a real-time face recognition model implemented with PyTorch framework for studying purposes.

License

Notifications You must be signed in to change notification settings

CVML-KU-Research/FaceNet

Repository files navigation

Face Recognition Fine‑Tuning — Quick Start

  1. Setup Python 3.8+ and PyTorch (CUDA optional but recommended). Install deps (minimal): numpy, tqdm, torch, torchvision.

  2. Data layout

Place images under class-labeled folders:

  <class_id_1>/ 
    img1.jpg
    img2.png
    ...
  <class_id_2>/ 
    img3.jpg
    img4.png
    ...
  <class_id_3>/ 
    ...
  1. Start fine-tuning with four category images
  • --model_name: mobilefacenet | ir_se
  • --classifier_type: arcface | cosface | FC
  • --aug_type: standard | strong | none
  • --phase: head_only | last_block
  • --train_batch_size / --test_batch_size
  • --max_epoch, --optimizer (adamw | SGD)
  • --save_plot → save loss/acc plots

MobileFaceNet + ArcFace (last block fine‑tune):

python .\fine_tune_main.py --root_dir .\data --model_name mobilefacenet --classifier_type arcface --phase last_block --optimizer adamw --save_plot

MobileFaceNet + CosFace

python .\fine_tune_main.py --root_dir .\data --model_name mobilefacenet --classifier_type cosface --phase last_block --optimizer adamw --save_plot

  1. Testing python test_model.py --classifier_type combined

About

FaceNet is a real-time face recognition model implemented with PyTorch framework for studying purposes.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published