Skip to content

Analyzing Semantic Change through Lexical Replacements

Notifications You must be signed in to change notification settings

ChangeIsKey/asc-lr

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Analyzing Semantic Change through Lexical Replacements

This repository contains the code accompanying the paper titled "Analyzing Semantic Change through Lexical Replacements"

Paper Abstract

In this paper, we analyse the tug of war between the contextualisation and the pre-trained knowledge of BERT models. If BERT models excessively rely on pre-trained knowledge to represent words, they may falter when faced with words or meanings that lie beyond their training data, e.g., words outside their pre-trained vocabulary or words that have experienced semantic change. We conduct analysis via a replacement schema, which generates replacement sets with graded lexical relatedness, allowing examination of the models' degree of contextualisation. We find that a large part of the representation of a word stems from information stored in the model itself and that the degree of contextualisation varies across parts of speech. Furthermore, we leverage the replacement schema as a basis for a novel interpretable approach to Lexical Semantic Change, surpassing the state-of-the-art for English.

Citation

@inproceedings{analyzing_semantic_change_through_lexical_replacements,
  author    = {Francesco Periti and
               Pierluigi Cassotti and
               Haim Dubossarsky and
               Nina Tahmasebi},
  title     = {Analyzing Semantic Change through Lexical Replacements},
  year      = {2024},
}

Contents

This repository includes the following files:

src: Python code.

SemCor dataset

Lexical substitutes generation

Masked Language Modeling

LLama 7B Generation

https://huggingface.co/ChangeIsKey/llama-7b-lexical-substitution/

Reproducing the Analysis: Execution Instructions

Convert and create unknown replacements

python src/unknwon_replacements.py

Extract embeddings for every word in each sentence from each replacement file across all layers of the model

layers=12 # layers of the model
for layer in $(seq 1 $layers);
do
    python store_embeddings.py --dir replacements --batch_size 16 --layer "${layer}" --model bert-base-uncased --use_gpu -s "##"
    python store_embeddings.py --dir replacements --batch_size 16 --layer "${layer}" --model xlm-roberta-base --use_gpu -s "_"
done

Download and process WiC datasets

bash process_wic_datasets.sh

Extract embeddings for every target word of each WiC dataset

python store_target_embeddings.py -d WiC/mclwic_en --model bert-base-uncased --batch_size 16 --train_set --test_set --dev_set --use_gpu
python store_target_embeddings.py -d WiC/wic_en --model bert-base-uncased --batch_size 16 --train_set --test_set --dev_set --use_gpu
python store_target_embeddings.py -d WiC/mclwic_fr --model dbmdz/bert-base-french-europeana-cased --batch_size 16 --test_set --dev_set --use_gpu # no train set available
python store_target_embeddings.py -d WiC/xlwic_it --model dbmdz/bert-base-italian-uncased --batch_size 16 --train_set --test_set --dev_set --use_gpu
python store_target_embeddings.py -d WiC/wicita --model dbmdz/bert-base-italian-uncased --batch_size 16 --train_set --test_set --dev_set --use_gpu
python store_target_embeddings.py -d WiC/dwug_de --model bert-base-german-cased --batch_size 16 --train_set --test_set --dev_set --use_gpu

Compute distances between embeddings in each layer

layers=12 # layers of the model
for layer in $(seq 1 $layers);
do
    python embedding_distances.py -e "bert/embeddings" -l "${layer}" -t "bert/target_index" -s "bert/special_token_mask" --model_type bert
    python embedding_distances.py -e "xlmr/embeddings" -l "${layer}" -t "xlmr/target_index" -s "xlmr/special_token_mask" --model_type xlmr
done

Compute distances between word and context embeddings in each layer. Context embeddings is computed as average of the other token embeddings in the sentence.

layers=12 # layers of the model
for layer in $(seq 1 $layers);
do
    python word_context_embedding_distances.py -e "bert/embeddings" -l "${layer}" -t "bert/target_index" -s "bert/special_tokens_mask" --model_type bert
    python word_context_embedding_distances.py -e "xlmr/embeddings" -l "${layer}" -t "xlmr/target_index" -s "xlmr/special_tokens_mask" --model_type xlmr
done

Compute attention differences between attention scores in each layer

layers=12 # layers of the model
for layer in $(seq 1 $layers);
do
    python attention_differences.py -d replacements -b 16 -l "${layer}" -m bert-base-uncased -s "##" --use_gpu
    python attention_differences.py -d replacements -b 16 -l "${layer}" -m xlm-roberta-base -s "_" --use_gpu
done

Plot Self-embedding distances

python sed_plots.py

Compute stats for Word-in-Context

python wic_stats.py -d WiC/mclwic_en -m bert-base-uncased --test_set --train_set --dev_set
python wic_stats.py -d WiC/wic_en -m bert-base-uncased --test_set --train_set --dev_set
python wic_stats.py -d WiC/mclwic_fr -m dbmdz_bert-base-french-europeana-cased --test_set --dev_set
python wic_stats.py -d WiC/xlwic_it -m dbmdz_bert-base-italian-uncased --test_set --train_set --dev_set
python wic_stats.py -d WiC/wicita -m dbmdz_bert-base-italian-uncased --test_set --train_set --dev_set
python wic_stats.py -d WiC/dwug_de -m bert-base-german-cased --test_set --train_set --dev_set

Ridgeline plot for polysemy

python joyplot_wic_stats.py

Download data for LSC

wget https://zenodo.org/record/7441645/files/dwug_de.zip?download=1
unzip dwug_de.zip\?download\=1
mv dwug_de DWUG-German

wget https://zenodo.org/record/6433667/files/dwug_es.zip?download=1
unzip dwug_es.zip?download=1
mv dwug_es DWUG-Spanish

wget https://zenodo.org/record/7389506/files/dwug_sv.zip?download=1
unzip dwug_sv.zip?download=1
mv dwug_sv DWUG-Swedish

wget https://zenodo.org/record/7387261/files/dwug_en.zip?download=1
unzip dwug_en.zip\?download\=1
mv dwug_en DWUG-English

Process data for LSC

python processDWUGdatasets.py  -b DWUG-German -c datasets/LSC/ -t tokenization/LSC
python processDWUGdatasets.py  -b DWUG-Swedish -c datasets/LSC/ -t tokenization/LSC
python processDWUGdatasets.py  -b DWUG-English -c datasets/LSC/ -t tokenization/LSC
python processDWUGdatasets.py  -b DWUG-Spanish -c datasets/LSC/ -t tokenization/LSC

Generated artificial LSC datasets

Replacements.ipynb

Store embeddings for LSC

python embs-lsc.py -d DWUG-English-repl --model bert-base-multilingual-cased --batch_size 16 --use_gpu
python embs-lsc.py -d DWUG-English-repl --model bert-base-uncased --batch_size 16 --use_gpu
python embs-lsc.py -d DWUG-English-repl --model xlm-roberta-base --batch_size 16 --use_gpu
python embs-lsc.py -d DWUG-German-repl --model bert-base-multilingual-cased --batch_size 16 --use_gpu
python embs-lsc.py -d DWUG-German-repl --model bert-base-german-cased --batch_size 16 --use_gpu
python embs-lsc.py -d DWUG-German-repl --model xlm-roberta-base --batch_size 16 --use_gpu
python embs-lsc.py -d DWUG-Swedish-repl --model bert-base-multilingual-cased --batch_size 16 --use_gpu
python embs-lsc.py -d DWUG-Swedish-repl --model KBLab/bert-base-swedish-cased-new --batch_size 8 --use_gpu
python embs-lsc.py -d DWUG-Swedish-repl --model xlm-roberta-base --batch_size 16 --use_gpu
python embs-lsc.py -d DWUG-Spanish-repl --model bert-base-multilingual-cased --batch_size 16 --use_gpu
python embs-lsc.py -d DWUG-Spanish-repl --model dccuchile/bert-base-spanish-wwm-uncased --batch_size 16 --use_gpu
python embs-lsc.py -d DWUG-Spanish-repl --model xlm-roberta-base --batch_size 16 --use_gpu

Test PRT and JSD for LSC datasets

Replacements.ipynb

New approach for LSC

python3 lsc_compute.py

About

Analyzing Semantic Change through Lexical Replacements

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published