Skip to content

CodingMaker2/CDT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Conditional Diffusion Transformer Enables Few-Shot Spatiotemporal Modeling

Our method is implemented based on the BasicTS framework, for more information https://github.com/GestaltCogTeam/BasicTS/

Python Python 3.6 or higher is required (3.8 or higher is recommended).

We recommend using Miniconda or Anaconda to create a virtual Python environment.

PyTorch BasicTS is flexible regarding the PyTorch version. You can install PyTorch according to your Python version. We recommend using pip for installation.

Other Dependencies After ensuring PyTorch is installed correctly, you can install the other dependencies:

pip install -r requirements.txt

Example 1: Python 3.11 + PyTorch 2.3.1 + CUDA 12.1 (Recommended)

Install Python

conda create -n BasicTS python=3.11 conda activate BasicTS

Install PyTorch

pip install torch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 --index-url https://download.pytorch.org/whl/cu121

Install other dependencies

pip install -r requirements.txt

how to run the code: python CDT/experiments/train.py

About

No description, website, or topics provided.

Resources

License

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages