-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'final_data_collection' of https://github.com/Cubevoid/a…
…tari-obj-pred into final_data_collection
- Loading branch information
Showing
1 changed file
with
46 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,36 +1,74 @@ | ||
import sys | ||
import numpy as np | ||
from numpy import typing as npt | ||
from matplotlib import pyplot as plt | ||
|
||
from src.data_collection.data_loader import DataLoader | ||
|
||
|
||
def calculate_iou(boxes1, boxes2): | ||
""" | ||
Calculate IoU (Intersection over Union) between corresponding bounding boxes. | ||
boxes1 and boxes2 should have the format (T, O, 4), where T is the number of timesteps, | ||
O is the number of objects, and 4 represents (x2, y2, x1, y1). | ||
""" | ||
x1_1, y1_1, x2_1, y2_1 = np.split(boxes1, 4, axis=-1) | ||
x1_2, y1_2, x2_2, y2_2 = np.split(boxes2, 4, axis=-1) | ||
x1_1, x2_1 = np.minimum(x1_1, x2_1), np.maximum(x1_1, x2_1) | ||
y1_1, y2_1 = np.minimum(y1_1, y2_1), np.maximum(y1_1, y2_1) | ||
x1_2, x2_2 = np.minimum(x1_2, x2_2), np.maximum(x1_2, x2_2) | ||
y1_2, y2_2 = np.minimum(y1_2, y2_2), np.maximum(y1_2, y2_2) | ||
# Calculate intersection coordinates | ||
x1 = np.maximum(x1_1, x1_2) | ||
y1 = np.maximum(y1_1, y1_2) | ||
x2 = np.minimum(x2_1, x2_2) | ||
y2 = np.minimum(y2_1, y2_2) | ||
# Swap coordinates where necessary | ||
x1, x2 = np.minimum(x1, x2), np.maximum(x1, x2) | ||
y1, y2 = np.minimum(y1, y2), np.maximum(y1, y2) | ||
intersection_area = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) | ||
boxes1_area = (x2_1 - x1_1) * (y2_1 - y1_1) | ||
boxes2_area = (x2_2 - x1_2) * (y2_2 - y1_2) | ||
union_area = boxes1_area + boxes2_area - intersection_area | ||
iou = np.where(union_area > 0, intersection_area / union_area, 0) | ||
return iou | ||
|
||
|
||
def main(game: str) -> None: | ||
print(f"Loading data for {game}...") | ||
dl_sam = DataLoader(game, "SAM", 32, 4) | ||
dl_fastsam = DataLoader(game, "FastSAM-x", 32, 4, max_data=len(dl_sam.frames)) | ||
num_frames = min(len(dl_sam.frames), len(dl_fastsam.frames)) | ||
print(f"Number of frames: {num_frames}") | ||
objects_sam = dl_sam.object_types[:num_frames] | ||
objects_fastsam = dl_fastsam.object_types[:num_frames] | ||
objects_gt = dl_fastsam.object_bounding_boxes[:num_frames, :, :2] # [T, O, 2] | ||
obj_per_frame_sam = np.count_nonzero(objects_sam, axis=1) | ||
obj_per_frame_fastsam = np.count_nonzero(objects_fastsam, axis=1) | ||
obj_per_frame_gt = np.count_nonzero(objects_gt.sum(-1), axis=-1) | ||
print(f"Average number of objects per frame for ground truth: {np.mean(obj_per_frame_gt)}") | ||
objects_sam = dl_sam.object_bounding_boxes[:num_frames] # [T, O, 4] | ||
objects_fastsam = dl_sam.object_bounding_boxes[:num_frames] # [T, O, 4] | ||
obj_per_frame_sam = np.count_nonzero(objects_sam[:, :, :2].sum(-1), axis=-1) | ||
obj_per_frame_fastsam = np.count_nonzero(objects_fastsam[:, :, :2].sum(-1), axis=-1) | ||
print(f"Average number of objects per frame for SAM: {np.mean(obj_per_frame_sam)}") | ||
print(f"Average number of objects per frame for FastSAM-x: {np.mean(obj_per_frame_fastsam)}") | ||
# Make plot of number of objects per frame | ||
plt.figure() | ||
plt.plot(obj_per_frame_sam, label="SAM") | ||
plt.plot(obj_per_frame_fastsam, label="FastSAM-x") | ||
# plt.plot(obj_per_frame_gt, label="Ground truth") | ||
plt.xlabel("Frame") | ||
plt.ylabel("Number of objects") | ||
plt.legend() | ||
plt.title(f"SAM vs FastSAM-x: Number of objects per frame for {game}") | ||
plt.savefig(f"{game}_SAM_vs_FastSAM.png") | ||
|
||
# Calculate IoU between FastSAM and SAM bboxes | ||
iou = calculate_iou(objects_sam, objects_fastsam).squeeze(-1) | ||
num_obj = np.maximum(obj_per_frame_sam, obj_per_frame_fastsam) # per frame | ||
ious = [np.mean(iou[i, : num_obj[i]]) for i in range(num_frames)] | ||
# Make new plot of IoUs | ||
plt.figure() | ||
plt.plot(ious, label="Mean IoU") | ||
plt.xlabel("Frame") | ||
plt.ylabel("IoU") | ||
plt.legend() | ||
plt.title(f"Mean IoU between SAM and FastSAM-x bboxes for {game}") | ||
plt.savefig(f"{game}_IoU.png") | ||
|
||
|
||
if __name__ == "__main__": | ||
main(sys.argv[1]) |