Repository for the davidelanz/jupytorch docker image. It provides a quick set up for Pytorch and Jupyter Lab with Docker.
Features | |
---|---|
The image supports nbdev paradigm (by fast.ai), allowing you to develop python libraries directly in Jupyter Notebooks | |
The image comes with jupyterlab_code_formatter already installed | |
The image comes with LSP Python language server for JupyterLab already installed |
Download the image from davidelanz/jupytorch,
then mount the container (the image exposes JupyterLab on the 8888
port):
docker run -p CONTANER_PORT:8888 -v EXTERNAL_FOLDER:/workspace --name CONTAINER_NAME davidelanz/jupytorch:TAG
Your workspace will be available at localhost:CONTANER_PORT.
Supported tags:
docker pull davidelanz/jupytorch:cpu
docker pull davidelanz/jupytorch:gpu-cuda10.1-cudnn7
docker pull davidelanz/jupytorch:gpu-cuda10.1-cudnn8
docker pull davidelanz/jupytorch:gpu-cuda10.2-cudnn7
docker pull davidelanz/jupytorch:gpu-cuda10.2-cudnn8
docker pull davidelanz/jupytorch:gpu-cuda11.1.1-cudnn8
The CPU version is directly built on the ubuntu18.04
docker image.
$ git clone https://github.com/davidelanz/jupytorch-docker
$ cd jupytorch-docker/cpu
# choose different PYTHON_VERSION and PYTORCH_VERSION arguments if needed
$ docker build . -t jupytorch/cpu \
--build-arg PYTHON_VERSION=### \
--build-arg PYTORCH_VERSION=###
The GPU version is directly built on the nvidia/cuda:{CUDA_VERSION}-cudnn{CUDNN_VERSION}-runtime-ubuntu18.04
docker image.
$ git clone https://github.com/davidelanz/jupytorch-docker
$ cd jupytorch-docker/gpu
# choose different PYTHON_VERSION, PYTORCH_VERSION, CUDA_VERSION, and CUDNN_VERSION arguments if needed
$ docker build . -t jupytorch/cpu \
--build-arg PYTHON_VERSION=### \
--build-arg PYTORCH_VERSION=### \
--build-arg CUDA_VERSION=### \
--build-arg CUDNN_VERSION=###