Skip to content

DeepKnowledge1/Python_for_CV

Repository files navigation

๐Ÿง  Python for Computer Vision: Build Your Own Image Toolkit from Scratch

A hands-on course where you'll learn how to build your own image processing toolkit in Python, tailored for real-world computer vision tasks. From loading images to simulating defects and preparing datasets for deep learning โ€” this course gives you the tools to do it all (and ship your own CLI tool at the end!).

bg

โœ… Legend

  • โœ… Uploaded & Completed
  • ๐Ÿ”„ In Progress / Not Uploaded Yet

โœ… What You'll Learn

  • ๐Ÿ” Python & Computer Vision Fundamentals
  • ๐Ÿ“ Dataset Management & Organization
  • ๐Ÿ–ผ๏ธ Image Preprocessing & Manipulation
  • ๐Ÿงฎ Essential CV Algorithms
  • ๐Ÿ”„ Advanced Computer Vision Techniques
  • ๐ŸŽญ Data Augmentation & Simulation
  • ๐Ÿ“Š Analysis & Validation
  • โšก Performance Optimization
  • ๐Ÿ”ง Tools & Integration

๐Ÿš€ By the End, You'll Have:

A fully working cv_toolkit.py script that lets you run commands like:

python cv_toolkit.py --input ./raw --resize 256x256 --grayscale --add_scratches --output ./processed

๐Ÿ’ก Perfect For:

  • ๐Ÿ” Complete beginners to programming
  • ๐Ÿค– Python developers new to CV
  • ๐Ÿ› ๏ธ Anyone building personal or production-level vision projects

๐Ÿ“š Course Structure

PART 1: FOUNDATIONS (For Complete Beginners)

๐Ÿ“ Section 1: Introduction to Programming & Computer Vision

Videos 1-7

Status Title
โœ… ๐Ÿ“ฆ Introduction ๐ŸŽฅ Watch Video
โœ… ๐Ÿ“ฆ What is Computer Vision & Why Python? + Real-World Use Cases ๐ŸŽฅ Watch Video
โœ… ๐Ÿ› ๏ธ Installing Python & Tools You Need โ€“ With Common Pitfalls & Fixes ๐ŸŽฅ Watch Video
โœ… ๐ŸŽต Modern Dependency Management with Poetry ๐ŸŽฅ Watch Video
โœ… ๐Ÿ” Code Quality with Pre-commit Hooks ๐ŸŽฅ Watch Video
โœ… ๐Ÿงช Running Your First Image Script โ€“ "Hello World" for CV ๐ŸŽฅ Watch Video
๐Ÿ”„ ๐Ÿงญ Course Roadmap โ€“ How to Get the Most Out of This Playlist

๐Ÿ“ Section 2: Python Fundamentals Through Image Examples

Videos 8-14

Status Title Code Example
โœ… ๐Ÿ”ข Variables, Numbers & Strings ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… โžก๏ธ If Statements & Loops ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿ“‹ Lists๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿ“‹ Tuple๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿ“‹ Dictionaries๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿ” Functions๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿ”„ Working with Files & Directories ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… โš ๏ธ Error Handling & Debugging ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
๐Ÿ”„ ๐Ÿ“Š ๐Ÿงช Quiz Time: Test Your Python Knowledge So [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 3: First Steps with Images

New section combining basics

Status Title Code Example
โœ… ๐Ÿ“ท How Computers See Images - Pixels, RGB, Channels ๐ŸŽฅ Watch Video [๐Ÿ’ป Code Example]
โœ… ๐Ÿ“ฅ Load & Show Images Using OpenCV & Pillow ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿ“ Basic Transformations: Resize, Crop, Rotate ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐ŸŒˆ Understanding Color Spaces ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿ“ธ Mini Project: Simple Image Processing ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example

PART 2: BUILDING BLOCKS

๐Ÿ“ Section 4: Object-Oriented Programming for CV

Videos 20-29

Status Title Code Example
โœ… ๐Ÿšช What is OOP? Why It Matters for Computer Vision ๐ŸŽฅ Watch Video
โœ… ๐Ÿ“ฆ Classes vs Functions โ€“ When to Use Which ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿ› ๏ธ Defining Your First Class ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿงฑ Attributes & Methods โ€“ Organizing Image Transformations๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿ—๏ธ Constructors (__init__) and Default Settings๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐ŸŽฏ Mini Project: Build an Image Processor with Loadโ€“Transformโ€“Save Methods ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example

๐Ÿ“ Section 4A: Advanced Pythonic OOP

Videos 26-36

Status Title Code Example
โœ… ๐Ÿ” Inheritance โ€“ Build Specialized Processors from Base Classes ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿ” Inheritance โ€“ Refactoring Image Processor ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿง™ Magic Methods (Dunder) โ€“ Customize Behavior with __str__, __add__, __eq__, etc. ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐ŸŽ Data Classes โ€“ Say Goodbye to Boilerplate with @dataclass ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿงญ Class vs Static vs Instance Methods โ€“ When and Why to Use Each ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿ” Encapsulation & Property Decorators โ€“ Clean Access with @property and Getters/Setters ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐ŸŒ€ Polymorphism โ€“ Use One Interface with Many Implementations ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿงฑ Abstract Base Classes โ€“ Enforce Rules Using abc.ABC and @abstractmethod ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿคฏ Only 1% of Python Devs Use This: The Hidden Power of Metaclasses ๐Ÿ” ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
โœ… ๐Ÿงฐ Composition Over Inheritance โ€“ "Has-a" Relationships for Real-World Modeling ๐ŸŽฅ Watch Video ๐Ÿ’ป Code Example
๐Ÿ”„ ๐Ÿ’ผ Build a Professional-Grade ImagePipeline Class [๐ŸŽฅ Watch Video] ๐Ÿ’ป Code Example
๐Ÿ”„ ๐Ÿ”„ OOP Design Patterns for Computer Vision Applications [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 5: Working with Image Files & Folders

Videos 37-43

Status Title Code Example
๐Ÿ”„ ๐Ÿ—‚๏ธ Organizing Your Dataset - Folder Structures [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“ List All Images in a Folder Recursively [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ”„ Rename, Move & Copy Files Like a Pro [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ โŒ Delete Unwanted Files Safely [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ–ผ๏ธ Convert Image Formats in Bulk [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ”„ Version Control for Image Datasets [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“ Mini Project: Organize Dataset into Splits [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 6: Essential Image Preprocessing

Videos 44-49

Status Title Code Example
๐Ÿ”„ ๐Ÿ“ฆ Patchify Large Images into Tiles [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ โœ‚๏ธ Crop Images to Region of Interest [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐ŸŽจ Histogram Equalization for Better Contrast [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ–Œ๏ธ Overlay Masks on Images for Segmentation [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ”€ Normalize Pixel Values for Deep Learning [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿงฐ Mini Project: Complete Preprocessing Pipeline [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

PART 3: CORE CV TECHNIQUES

๐Ÿ“ Section 7: Image Filtering & Edge Detection

Videos 50-56

Status Title Code Example
โœ… ๐Ÿ” Introduction to Image Filtering & Kernels ๐ŸŽฅ Watch Video
โœ… ๐Ÿ”ช Edge Detection: ๐ŸŽฅSobel, ๐ŸŽฅCanny, and ๐ŸŽฅ Laplacian ๐Ÿ’ป Soble๐Ÿ’ป Canny๐Ÿ’ป Laplacian
โœ… ๐Ÿงฎ Convolution: How Filters Work Under the Hood ๐ŸŽฅ Watch Video [๐Ÿ’ป Code Example]
โœ… ๐ŸŽฏ Corner Detection: Harris & Shi-Tomasi Methods ๐Ÿ’ป Code Example
โœ… ๐Ÿงฟ Blob Detection Using Laplacian of Gaussian ๐Ÿ’ป Canny
๐Ÿ”„ ๐ŸŒ€ Advanced Filtering for Denoising [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐ŸŽญ Mini Project: Edge Detection Visualization Tool [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 8: Feature Detection & Matching

Videos 57-62

Status Title Code Example
โœ… ๐Ÿ”‘ Local Features: SIFT, SURF, ORB, and BRIEF ๐Ÿ’ป SIFT
๐Ÿ”„ ๐Ÿ”„ Feature Matching Techniques & Distance Metrics [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ–ผ๏ธ Image Matching with RANSAC [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿงฉ Creating Image Mosaics with Homography [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ—๏ธ Building a Simple Object Recognition System [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ” Mini Project: Image Matching Application [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 9: Data Augmentation & Defect Simulation

Videos 63-68

Status Title Code Example
๐Ÿ”„ ๐ŸŒซ๏ธ Add Artificial Noise & Blur to Images [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“ Draw Random Lines & Scratches [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐ŸŒ’ Simulate Occlusion & Lighting Changes [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ”„ Rotate Images for Robustness [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐ŸŽž๏ธ Apply Transformations in Real-Time [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿงจ Mini Project: Realistic Defect Simulation [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

PART 4: ADVANCED TECHNIQUES

๐Ÿ“ Section 10: Segmentation & Shape Analysis

Videos 69-74

Status Title Code Example
๐Ÿ”„ ๐Ÿงฉ Thresholding Techniques [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ” Connected Component Analysis & Region Properties [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“Š Watershed Algorithm for Complex Segmentation [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ โžฐ Contour Detection & Manipulation [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“ Shape Analysis: Moments, Circularity, Convexity [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ” Mini Project: Shape Classifier [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 11: Motion Analysis & Video Processing

Videos 75-79

Status Title Code Example
๐Ÿ”„ ๐ŸŒŠ Optical Flow: Lucas-Kanade Method [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ”„ Dense Optical Flow for Motion Field Estimation [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐ŸŽฏ Object Tracking Algorithms [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ” Background Subtraction for Moving Object Detection[๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿƒ Mini Project: Motion Heatmap Generator [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 12: Working with Masks & Annotations

Videos 80-87

Status Title Code Example
๐Ÿ”„ ๐ŸŽญ What Are Binary Masks & Why They Matter [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“ Generate Masks from Bounding Box Annotations [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐ŸŽจ Create Synthetic Masks for Objects [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ‘€ Visualize Image-Mask Pairs [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“„ Edit Items in JSON Annotation Files [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ” Filter Annotations by Class [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ โš ๏ธ Check for Missing Images or Labels [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿงช Mini Project: Annotation File Manipulation Tool [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

PART 5: OPTIMIZATION & INTEGRATION

๐Ÿ“ Section 13: Dataset Analysis & Quality Control

Videos 88-92

Status Title Code Example
๐Ÿ”„ ๐Ÿ“Š Analyze Image Dimensions Across Dataset [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“ˆ Plot Class Distribution from Annotations [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ” Show Random Samples from Dataset [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ—‚๏ธ Detect Duplicate Images Automatically [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“Š Mini Project: Interactive Dataset Analysis Dashboard [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 14: Performance Optimization

Videos 93-97

Status Title Code Example
๐Ÿ”„ โšก Speed Up Processing with Multiprocessing [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ”ข Vectorization Techniques with NumPy [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿš€ GPU Acceleration for Image Processing [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ’พ Memory Management for Large Datasets [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ โฑ๏ธ Mini Project: Optimized Preprocessing Pipeline [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 15: Bridging to Deep Learning

Videos 98-102

Status Title Code Example
๐Ÿ”„ ๐Ÿ”„ When to Use Traditional CV vs. Deep Learning [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿง  Feature Engineering for Neural Networks [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐ŸŽฏ Improving CNN Performance with Preprocessing [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“ˆ Hybrid Systems: CV + Neural Networks [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ” Mini Project: Hybrid Object Detection System [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

PART 6: ADVANCED APPLICATIONS & FINAL PROJECT

๐Ÿ“ Section 16: Anomaly Detection with PaDiM

Videos 103-107

Status Title Code Example
๐Ÿ”„ ๐Ÿ” Introduction to PaDiM Algorithm [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ› ๏ธ Implementation Details & Step-by-Step Guide [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ โš™๏ธ Parameter Optimization for Specific Use Cases [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“Š Performance Evaluation and Visualization [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿงช Mini Project: PaDiM-Based Defect Detector [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 17: Model Validation & Testing

Videos 108-111

Status Title Code Example
๐Ÿ”„ ๐Ÿ“ Evaluation Metrics for Computer Vision Models [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿงช Test Dataset Preparation and Validation [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“Š Result Visualization and Interpretation [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“ Mini Project: Automated Validation Pipeline [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 18: Building the Complete CV Toolkit

Videos 112-115

Status Title Code Example
๐Ÿ”„ ๐Ÿ—๏ธ Architecture Design for the CLI Toolkit [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿงฉ Component Integration with Modular Approach [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ’ป Command-line Interface Implementation [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]
๐Ÿ”„ ๐Ÿ“š Mini Project: Complete CV Toolkit [๐ŸŽฅ Watch Video] [๐Ÿ’ป Code Example]

๐Ÿ“ Section 19: Next Steps & Advanced Topics

Videos 116-118

Status Title
๐Ÿ”„ ๐Ÿ”ญ Advanced Computer Vision Topics
๐Ÿ”„ ๐Ÿข Industry Application Case Studies
๐Ÿ”„ ๐Ÿ›ฃ๏ธ Career Paths & Resources for Continued Learning

โœ… Summary

This course provides a comprehensive learning path from basic programming concepts to advanced computer vision techniques. With a strong emphasis on visual learning, hands-on practice, and real-world applications, you'll build a complete image processing toolkit while gaining valuable skills applicable to various computer vision projects.

Each section includes a mini-project that applies the concepts learned, building progressively toward the final CLI toolkit. The course is designed to be accessible to complete beginners while providing depth for those with prior programming experience.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published