A hands-on course where you'll learn how to build your own image processing toolkit in Python, tailored for real-world computer vision tasks. From loading images to simulating defects and preparing datasets for deep learning โ this course gives you the tools to do it all (and ship your own CLI tool at the end!).
- โ Uploaded & Completed
- ๐ In Progress / Not Uploaded Yet
- ๐ Python & Computer Vision Fundamentals
- ๐ Dataset Management & Organization
- ๐ผ๏ธ Image Preprocessing & Manipulation
- ๐งฎ Essential CV Algorithms
- ๐ Advanced Computer Vision Techniques
- ๐ญ Data Augmentation & Simulation
- ๐ Analysis & Validation
- โก Performance Optimization
- ๐ง Tools & Integration
A fully working cv_toolkit.py
script that lets you run commands like:
python cv_toolkit.py --input ./raw --resize 256x256 --grayscale --add_scratches --output ./processed
- ๐ Complete beginners to programming
- ๐ค Python developers new to CV
- ๐ ๏ธ Anyone building personal or production-level vision projects
Videos 1-7
Status | Title |
---|---|
โ | ๐ฆ Introduction ๐ฅ Watch Video |
โ | ๐ฆ What is Computer Vision & Why Python? + Real-World Use Cases ๐ฅ Watch Video |
โ | ๐ ๏ธ Installing Python & Tools You Need โ With Common Pitfalls & Fixes ๐ฅ Watch Video |
โ | ๐ต Modern Dependency Management with Poetry ๐ฅ Watch Video |
โ | ๐ Code Quality with Pre-commit Hooks ๐ฅ Watch Video |
โ | ๐งช Running Your First Image Script โ "Hello World" for CV ๐ฅ Watch Video |
๐ | ๐งญ Course Roadmap โ How to Get the Most Out of This Playlist |
Videos 8-14
Status | Title | Code Example |
---|---|---|
โ | ๐ข Variables, Numbers & Strings ๐ฅ Watch Video | ๐ป Code Example |
โ | โก๏ธ If Statements & Loops ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ Lists๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ Tuple๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ Dictionaries๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ Functions๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ Working with Files & Directories ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ป Code Example | |
๐ | ๐ ๐งช Quiz Time: Test Your Python Knowledge So [๐ฅ Watch Video] | [๐ป Code Example] |
New section combining basics
Status | Title | Code Example |
---|---|---|
โ | ๐ท How Computers See Images - Pixels, RGB, Channels ๐ฅ Watch Video | [๐ป Code Example] |
โ | ๐ฅ Load & Show Images Using OpenCV & Pillow ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ Basic Transformations: Resize, Crop, Rotate ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ Understanding Color Spaces ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ธ Mini Project: Simple Image Processing ๐ฅ Watch Video | ๐ป Code Example |
Videos 20-29
Status | Title | Code Example |
---|---|---|
โ | ๐ช What is OOP? Why It Matters for Computer Vision ๐ฅ Watch Video | |
โ | ๐ฆ Classes vs Functions โ When to Use Which ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ ๏ธ Defining Your First Class ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐งฑ Attributes & Methods โ Organizing Image Transformations๐ฅ Watch Video | ๐ป Code Example |
โ | ๐๏ธ Constructors (__init__ ) and Default Settings๐ฅ Watch Video |
๐ป Code Example |
โ | ๐ฏ Mini Project: Build an Image Processor with LoadโTransformโSave Methods ๐ฅ Watch Video | ๐ป Code Example |
Videos 26-36
Status | Title | Code Example |
---|---|---|
โ | ๐ Inheritance โ Build Specialized Processors from Base Classes ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ Inheritance โ Refactoring Image Processor ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ง Magic Methods (Dunder) โ Customize Behavior with __str__ , __add__ , __eq__ , etc. ๐ฅ Watch Video |
๐ป Code Example |
โ | ๐ Data Classes โ Say Goodbye to Boilerplate with @dataclass ๐ฅ Watch Video |
๐ป Code Example |
โ | ๐งญ Class vs Static vs Instance Methods โ When and Why to Use Each ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐ Encapsulation & Property Decorators โ Clean Access with @property and Getters/Setters ๐ฅ Watch Video |
๐ป Code Example |
โ | ๐ Polymorphism โ Use One Interface with Many Implementations ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐งฑ Abstract Base Classes โ Enforce Rules Using abc.ABC and @abstractmethod ๐ฅ Watch Video |
๐ป Code Example |
โ | ๐คฏ Only 1% of Python Devs Use This: The Hidden Power of Metaclasses ๐ ๐ฅ Watch Video | ๐ป Code Example |
โ | ๐งฐ Composition Over Inheritance โ "Has-a" Relationships for Real-World Modeling ๐ฅ Watch Video | ๐ป Code Example |
๐ | ๐ผ Build a Professional-Grade ImagePipeline Class [๐ฅ Watch Video] |
๐ป Code Example |
๐ | ๐ OOP Design Patterns for Computer Vision Applications [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 37-43
Status | Title | Code Example |
---|---|---|
๐ | ๐๏ธ Organizing Your Dataset - Folder Structures [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ List All Images in a Folder Recursively [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Rename, Move & Copy Files Like a Pro [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | โ Delete Unwanted Files Safely [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ผ๏ธ Convert Image Formats in Bulk [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Version Control for Image Datasets [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Mini Project: Organize Dataset into Splits [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 44-49
Status | Title | Code Example |
---|---|---|
๐ | ๐ฆ Patchify Large Images into Tiles [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | โ๏ธ Crop Images to Region of Interest [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐จ Histogram Equalization for Better Contrast [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐๏ธ Overlay Masks on Images for Segmentation [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Normalize Pixel Values for Deep Learning [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐งฐ Mini Project: Complete Preprocessing Pipeline [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 50-56
Status | Title | Code Example |
---|---|---|
โ | ๐ Introduction to Image Filtering & Kernels ๐ฅ Watch Video | |
โ | ๐ช Edge Detection: ๐ฅSobel, ๐ฅCanny, and ๐ฅ Laplacian | ๐ป Soble๐ป Canny๐ป Laplacian |
โ | ๐งฎ Convolution: How Filters Work Under the Hood ๐ฅ Watch Video | [๐ป Code Example] |
โ | ๐ฏ Corner Detection: Harris & Shi-Tomasi Methods | ๐ป Code Example |
โ | ๐งฟ Blob Detection Using Laplacian of Gaussian | ๐ป Canny |
๐ | ๐ Advanced Filtering for Denoising [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ญ Mini Project: Edge Detection Visualization Tool [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 57-62
Status | Title | Code Example |
---|---|---|
โ | ๐ Local Features: SIFT, SURF, ORB, and BRIEF | ๐ป SIFT |
๐ | ๐ Feature Matching Techniques & Distance Metrics [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ผ๏ธ Image Matching with RANSAC [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐งฉ Creating Image Mosaics with Homography [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐๏ธ Building a Simple Object Recognition System [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Mini Project: Image Matching Application [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 63-68
Status | Title | Code Example |
---|---|---|
๐ | ๐ซ๏ธ Add Artificial Noise & Blur to Images [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Draw Random Lines & Scratches [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Simulate Occlusion & Lighting Changes [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Rotate Images for Robustness [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐๏ธ Apply Transformations in Real-Time [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐งจ Mini Project: Realistic Defect Simulation [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 69-74
Status | Title | Code Example |
---|---|---|
๐ | ๐งฉ Thresholding Techniques [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Connected Component Analysis & Region Properties [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Watershed Algorithm for Complex Segmentation [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | โฐ Contour Detection & Manipulation [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Shape Analysis: Moments, Circularity, Convexity [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Mini Project: Shape Classifier [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 75-79
Status | Title | Code Example |
---|---|---|
๐ | ๐ Optical Flow: Lucas-Kanade Method [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Dense Optical Flow for Motion Field Estimation [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ฏ Object Tracking Algorithms [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Background Subtraction for Moving Object Detection[๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Mini Project: Motion Heatmap Generator [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 80-87
Status | Title | Code Example |
---|---|---|
๐ | ๐ญ What Are Binary Masks & Why They Matter [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Generate Masks from Bounding Box Annotations [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐จ Create Synthetic Masks for Objects [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Visualize Image-Mask Pairs [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Edit Items in JSON Annotation Files [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Filter Annotations by Class [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | [๐ป Code Example] | |
๐ | ๐งช Mini Project: Annotation File Manipulation Tool [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 88-92
Status | Title | Code Example |
---|---|---|
๐ | ๐ Analyze Image Dimensions Across Dataset [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Plot Class Distribution from Annotations [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Show Random Samples from Dataset [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐๏ธ Detect Duplicate Images Automatically [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Mini Project: Interactive Dataset Analysis Dashboard [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 93-97
Status | Title | Code Example |
---|---|---|
๐ | โก Speed Up Processing with Multiprocessing [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ข Vectorization Techniques with NumPy [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ GPU Acceleration for Image Processing [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐พ Memory Management for Large Datasets [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | โฑ๏ธ Mini Project: Optimized Preprocessing Pipeline [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 98-102
Status | Title | Code Example |
---|---|---|
๐ | ๐ When to Use Traditional CV vs. Deep Learning [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ง Feature Engineering for Neural Networks [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ฏ Improving CNN Performance with Preprocessing [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Hybrid Systems: CV + Neural Networks [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Mini Project: Hybrid Object Detection System [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 103-107
Status | Title | Code Example |
---|---|---|
๐ | ๐ Introduction to PaDiM Algorithm [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ ๏ธ Implementation Details & Step-by-Step Guide [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | โ๏ธ Parameter Optimization for Specific Use Cases [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Performance Evaluation and Visualization [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐งช Mini Project: PaDiM-Based Defect Detector [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 108-111
Status | Title | Code Example |
---|---|---|
๐ | ๐ Evaluation Metrics for Computer Vision Models [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐งช Test Dataset Preparation and Validation [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Result Visualization and Interpretation [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Mini Project: Automated Validation Pipeline [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 112-115
Status | Title | Code Example |
---|---|---|
๐ | ๐๏ธ Architecture Design for the CLI Toolkit [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐งฉ Component Integration with Modular Approach [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ป Command-line Interface Implementation [๐ฅ Watch Video] | [๐ป Code Example] |
๐ | ๐ Mini Project: Complete CV Toolkit [๐ฅ Watch Video] | [๐ป Code Example] |
Videos 116-118
Status | Title |
---|---|
๐ | ๐ญ Advanced Computer Vision Topics |
๐ | ๐ข Industry Application Case Studies |
๐ | ๐ฃ๏ธ Career Paths & Resources for Continued Learning |
This course provides a comprehensive learning path from basic programming concepts to advanced computer vision techniques. With a strong emphasis on visual learning, hands-on practice, and real-world applications, you'll build a complete image processing toolkit while gaining valuable skills applicable to various computer vision projects.
Each section includes a mini-project that applies the concepts learned, building progressively toward the final CLI toolkit. The course is designed to be accessible to complete beginners while providing depth for those with prior programming experience.