Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions deeptrack/models/gans/cgan.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,8 +104,8 @@ def train_step(self, data):
shape = tf.shape(disc_pred_real)
valid, fake = tf.ones(shape), tf.zeros(shape)
d_loss = (
self.discriminator.compiled_loss(disc_pred_real, valid)
+ self.discriminator.compiled_loss(disc_pred_fake, fake)
self.discriminator.compiled_loss(valid, disc_pred_real)
+ self.discriminator.compiled_loss(fake, disc_pred_fake)
) / 2

# Compute gradient and apply gradient
Expand All @@ -124,8 +124,8 @@ def train_step(self, data):
batch_y_copies = [batch_y] * (self.num_losses - 1)

g_loss = self.assemble.compiled_loss(
[assemble_output[0], *generated_image_copies],
[valid, *batch_y_copies],
[assemble_output[0], *generated_image_copies],
)

# Compute gradient and apply gradient
Expand Down
8 changes: 4 additions & 4 deletions deeptrack/models/gans/pcgan.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ def __init__(
metrics=[],
**kwargs
):
super(PCGAN).__init__()
super().__init__()

# Build and compile the discriminator
self.discriminator = discriminator
Expand Down Expand Up @@ -146,8 +146,8 @@ def train_step(self, data):
shape = tf.shape(disc_pred_1)
valid, fake = tf.ones(shape), tf.zeros(shape)
d_loss = (
self.discriminator.compiled_loss(disc_pred_1, valid)
+ self.discriminator.compiled_loss(disc_pred_2, fake)
self.discriminator.compiled_loss(valid, disc_pred_1)
+ self.discriminator.compiled_loss(fake, disc_pred_2)
) / 2

# Compute gradient and apply gradient
Expand All @@ -168,12 +168,12 @@ def train_step(self, data):
batch_y_copies = [batch_y] * (self.num_losses - 1)

g_loss = self.assemble.compiled_loss(
[valid, perceptual_valid, *batch_y_copies],
[
assemble_output[0],
assemble_output[1],
*generated_image_copies,
],
[valid, perceptual_valid, *batch_y_copies],
)

# Compute gradient and apply gradient
Expand Down