Python Data Analysis project involving data cleaning and visualization of statistical insights using bar graphs.
Welcome to this Python-based data analysis project where we perform data cleaning and statistical analysis using common Python libraries. This project is aimed at demonstrating the practical workflow of preparing messy data for meaningful insights through cleaning, transformation, and visualization.
- Python 3.13.5
- NumPy – for numerical operations
- Pandas – for data manipulation and analysis
- Matplotlib – for static visualizations
- Seaborn – for statistical data visualization
data_analysis_project/
│
├── dataset.csv # Raw dataset used for analysis
├── analysis.ipynb # Jupyter Notebook with code and visualizations
└── README.md # Project documentation (this file)
We start by importing the essential Python libraries for handling data and visualizing results.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
We read the dataset using Pandas:
df = pd.read_csv('dataset.csv')
This loads the dataset into a DataFrame df
for further operations.
We remove rows or columns with null values to prevent errors during analysis.
df.dropna(inplace=True)
We ensure all columns are of the correct data types:
df['column_name'] = df['column_name'].astype('desired_dtype')
For better readability and consistency:
df.rename(columns={'OldName': 'NewName'}, inplace=True)
We generate basic descriptive statistics:
df.describe()
This includes count, mean, standard deviation, min, max, etc.
To understand grouped behavior of data:
grouped_data = df.groupby('CategoryColumn')['ValueColumn'].sum().sort_values(ascending=False)
We visualize grouped data using bar graphs:
grouped_data.plot(kind='bar', figsize=(10,6), color='skyblue')
plt.title('Total Value by Category')
plt.xlabel('Category')
plt.ylabel('Total Value')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
This helps us visually interpret trends and outliers in the data.
We calculate key statistics such as:
- Mean
- Median
- Mode
- Standard Deviation
- Correlation
Example:
print("Mean:", df['column'].mean())
print("Standard Deviation:", df['column'].std())
print("Correlation Matrix:\n", df.corr())
This project demonstrates:
- Efficient handling of real-world, imperfect data.
- Extraction of meaningful insights through statistical measures.
- Effective use of bar graphs for data storytelling.
It serves as a solid foundation for beginners in data science and anyone looking to understand the basic EDA (Exploratory Data Analysis) workflow.
-
Clone this repository:
git clone https://github.com/your-username/data-analysis-project.git cd data-analysis-project
-
Install required libraries:
pip install numpy pandas matplotlib seaborn
-
Open the notebook:
jupyter notebook analysis.ipynb
For feedback or collaboration:
- ✉️ Email: deepanshraj03@gmail.com
- 🐙 GitHub: Deepansh3942