Skip to content

Deepikarajangam/Implementation-of-Linear-Regression-Using-Gradient-Descent

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 

Repository files navigation

Implementation-of-Linear-Regression-Using-Gradient-Descent

AIM:

To write a program to predict the profit of a city using the linear regression model with gradient descent.

Equipments Required:

  1. Hardware – PCs
  2. Anaconda – Python 3.7 Installation / Jupyter notebook

Algorithm

1.Import the required library and read the dataframe.

2.Write a function computeCost to generate the cost function.

3.Perform iterations og gradient steps with learning rate.

4.Plot the Cost function using Gradient Descent and generate the required graph.

Program:

import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
def linear_regression(X1,y,learning_rate = 0.1, num_iters = 1000):
    X = np.c_[np.ones(len(X1)),X1]
    theta = np.zeros(X.shape[1]).reshape(-1,1)
    
    for _ in range(num_iters):
        predictions = (X).dot(theta).reshape(-1,1)
        errors=(predictions - y ).reshape(-1,1)
        theta -= learning_rate*(1/len(X1))*X.T.dot(errors)
        return theta
data=pd.read_csv("C:\\Users\\Pandiyan\\Downloads\\50_Startups.csv")
print(data.head())
print("\n")
X=(data.iloc[1:,:-2].values)
X1=X.astype(float)
scaler=StandardScaler()
y=(data.iloc[1:,-1].values).reshape(-1,1)
X1_Scaled=scaler.fit_transform(X1)
Y1_Scaled=scaler.fit_transform(y)
print(X)
print("\n")
print(X1_Scaled)
print("\n")
theta= linear_regression(X1_Scaled,Y1_Scaled)
new_data=np.array([165349.2,136897.8,471784.1]).reshape(-1,1)
new_Scaled=scaler.fit_transform(new_data)
prediction=np.dot(np.append(1,new_Scaled),theta)
prediction=prediction.reshape(-1,1)
pre=scaler.inverse_transform(prediction)
print(prediction)
print(f"Predicted value: {pre}")

Output:

image image image image image image image

Result:

Thus the program to implement the linear regression using gradient descent is written and verified using python programming.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published