Embedin is an open-source vector database and efficient library that seamlessly converts popular databases like MySQL, PostgreSQL, and MS SQL Server into vector databases with zero effort.
Embedin is an ideal solution for AI applications like natural language processing, image recognition, and recommendation systems, offering fast indexing and retrieval. Its simple API and query language ensure ease of use and seamless integration.
Python 3.7 or higher.
pip install embedin
from embedin import Embedin
client = Embedin(collection_name="test_collection", texts=["This is a test", "Hello world!"])
result = client.query("These are tests", top_k=1) # Query the most similar text from the collection
print(result)
from embedin import Embedin
url = 'sqlite:///test.db'
client = Embedin(collection_name="test_collection", texts=["This is a test", "Hello world!"], url=url)
result = client.query("These are tests", top_k=1)
cd docker
docker-compose up embedin-postgres
example
import os
from embedin import Embedin
url = os.getenv('EMBEDIN_POSGRES_URL', "postgresql+psycopg2://embedin:embedin@localhost/embedin_db")
client = Embedin(collection_name="test_collection", texts=["This is a test", "Hello world!"], url=url)
result = client.query("These are tests", top_k=1)
cd docker
docker-compose up embedin-mysql
example
import os
from embedin import Embedin
url = os.getenv('EMBEDIN_MYSQL_URL', "mysql+pymysql://embedin:embedin@localhost/embedin_db")
client = Embedin(collection_name="test_collection", texts=["This is a test", "Hello world!"], url=url)
result = client.query("These are tests", top_k=1)
cd docker
docker-compose up embedin-mssql
example
import os
from embedin import Embedin
url = os.getenv('EMBEDIN_MSSQL_URL', "mssql+pymssql://sa:StrongPassword123@localhost/tempdb")
client = Embedin(collection_name="test_collection", url=url)
client.add_data(texts=["This is a test"], meta_data=[{"source": "abc4"}])
result = client.query("These are tests", top_k=1)
Please refer Contributors Guide
- unit test fail on faiss index (segmentation fault)