Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"We have already explored how to [extract coastlines using Landsat-8 multispectral imagery and band ratio technique](https://developers.arcgis.com/python/sample-notebooks/coastline-extraction-usa-landsat8-multispectral-imagery/). Now, the next step is to classify these coastlines into **multiple categories** based on their characteristics. To achieve this, we will **train a deep learning model** that can classify each coastline segment into one of the categories shown below:\n",
"We have already explored how to [extract coastlines using Landsat-8 multispectral imagery and band ratio technique](/python/latest/samples/coastline-extraction-usa-landsat8-multispectral-imagery/). Now, the next step is to classify these coastlines into **multiple categories** based on their characteristics. To achieve this, we will **train a deep learning model** that can classify each coastline segment into one of the categories shown below:\n",
"\n",
"<center><img src=\"data:image/PNG; base64, iVBORw0KGgoAAAANSUhEUgAAAMgAAAE8CAYAAACFLP4lAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAAEnQAABJ0Ad5mH3gAACPFSURBVHhe7V1NtrMssz1TspsR3BnYul0H4SjSdxS3k4bj+DrfymC8VUApPwWBRKPnPHuvtdebKBYF1IYC8z7n57///e8CgqBOCAQEC4RAQLBACAQEC4RAQLBACAQEC4RAQLDA8wUyj0vf/Sw/P/0yafdB8ESeKpB57EgYLI6/IJBp6bkd3bjM6n3wfZ7XtycJZF5Gs2r8LN04uc8QCJjjvyYQSqu6n24ZZ/4uYoFAwBz/uRXE528QyLxMY0+iZj8tOxos8Xfqt+sB+ym00XeRDWqzmSRiVpaderpnJ5qZPnduVTblqe76YKIxoPrkWbaZPp/2wU/XLf00e2W2srE/bLMf9bKf9+1xhEAqKIPU9TRw02QHlILDroDEma5NvCpSOQrkkcsw14CWNnLgeTbMYHt2Wss6gbAvxj+qu++9YKsKIjc7M93z9tCE7K0BLT5xGQp0LuMJmMXk25S9Jftj+0IOYnyblp/37bGEQF7S+fdyec+nARIw/RRet6kmPeMFWEtZKxDuu1hkEvTx9ZRrMMezuwnMsEwquEw99Oyc1Kv1z+d9ezQhkJcU/ygI1HRCmBtECQJOkSj1CEjPBAHSUpboBJIENzEb+AFr+r5cpq4epmZHrr3bt8cTAqnh+q6GB4lzaS2/zw2iu17i+kxLWWJBIMV7K2sC70UZWcWS1YVETanRaNIxP/WLxvmjvj2eEEgDecDXwcylNckgbtfTVcHxrbLEqwqErsn+JGVmJXqrb48nBPIG+YTGDGQwa+YGsaV9jX1REEF2LxPQ+Vysr+xTmmJJ+fiEq65tbX17PCGQt+gGLBjEfDuKebpZGbbvLWXX2Ts34ybXU66nSHF9tOeRfUGpTFpPLpjpetU4t/Xt0TxJIHzOH+emfKzprql56El0LzXXY0gvFYhn5/XM3hyX8jMyyBJIFGRkR44+5d1DGHgNZVeBuPJSr3zXRBZTTseY5nmia98WpJtP/jGv+U6M64mPbsfgPYcX5Lv07bE8SSBeh6u80mqSvrTjQdJPXahdElzEMHBa7FSW9VKsOQjCOL15QXNCtgW8nazSF4UsUt8n+55D9z9+8cj+2CD3x3avvj2OF0ixwLdZ2IOA+xAC+c2EQA4nBPKbCYEcTgjkNxMCOZwQCAgWCIGAYIEQCAgW+LMAAf7zn/+4TwCwQCAxIBDABwQSAQIBfEAgESAQwAcEEgECAXxAIBEgEMAHBBIBAgF8QCAR8gJ5Lo/hZn7aYTjc6QrhMZjvt7v5BvwxnCaQ5/OxDDcv4H5uy3B/2KA7ETmBPO/O19t9eTzuyx0C+SdwikDWYCNR3IZhGYKZ+eFKnQNdIM/lfmP/hiXx7mOB0ETB7Sbh/R2J/Z02nSaQW7xaPO/LzYjktpw5GRcFog04BKIAAjkAMkv/LGcuIhDIHoBADoAI5ForyGOwoo25ilgVyHN50vWbE7wl77HChuVsv04zqa/8tNSkqvH+7bk87uSDb5f2fMND69w6fy1SuzcSwtYdvg2PJ6fO7+JCAnGzjpbnfxHJCvJ8mE35YFaQYbk/+DsFo8SOIhDZY93W8u75qJzYNsHm2VZjeIX0k31m4D1cYntbjY0o3D5PgprF5KPaX4II4DbwYQWVZbFQHVvV77TpuriMQNaN+8kzzS4pFgXJKqAVubSjLR1ZgzkKXBuY7mO2L0Vc0Spd7W+hHwK0tenKuIZA1g36uasH47g9iMzqcRtbgilnw0e5TFZgCTQ7co0EVlwSIJAdkZnVTsJ+AuG8nt+XuDSIqE8CLcFUU/ZFGedvurpU+kuTmaRfJn1T311BIDtBZqRzT6587CIQuib5fsoLCqTJXwsW0yqUZHKDQHbA9cTB+Fwg0q74xEiu7yCQTNBa5OqxSFOsVn9D8OmXEUkwiBDIh5DOZ3Fcqws/F0guOOi6GnB1gShYT5HCKZsjdd0XlMpYgfkzfqu/MdzzgUDa2nRlnCKQ9axcjiljUl57FvZIseKj0Hvw3iANmrA/7DuNLNYDDSlPNMFIXJ8TIXCZ7ZjX1p8Kp9pfUzf75454vTQrdrmpTRfGCQLZVo8sT1ya99mkU/noRR6vlDZotFlVZmvLZOaPwSsBBb5vX3tRyD74ewv7nkOzXeuv/UVzsF/J2mxs00Vx8ib9etAFAvyrgEAiQCCADwgkAgQC+IBAIkAggA8IJAIEAviAQCJAIIAP/OPVIFggBAKCBUIgIFggBAKCBUIgIFggBAKCBUIgIFggBAKCBUIgv5rzMnb8c/J+mdT7B/Ef+vvspwlknqel77r1/xf4+emWfpyWWSkL5giBHM1zBOI6mEXR9f3S955Q+kl/BlQIgRzNUwQyjySMeLWYx6UzIvnyYP9qQiBH80J7EBnsbhln7T6YEgI5mhBIFedlGnu3wll23RgF5bzMFDidaYOQ91VKELkA6ydaTfmZV+WZtGcb/VS0I1HMqUCm3t5n24mNqsCuaKtnJ2xzwX/F7g/tQfup3D/T2maKi6BNZI/uhX5yn/hlPud1BOI65Yp7EAm6rqdAmSY70DS4vpA5bZRBGrnMNC69C5wkIKWt7pCCn+F9mAx2GsDT0rt7LIye9m2hEL0VRFJVpR9tO8oTUE1bV/8dX/svQiayKNy+cy0f+xrYp3Jcnn1YBbJNpoGfrvyeE+x5AqEZ0TSMAmmdGXkG0MqeSjcYNIsWT9ioPXMyMC6w42fXAIgGU4I7Kr+KLwo8uR6mWOmqYpnxJWBlW9/0PxWtCD8nQD3YxV6yShYmh3d5mkC2wd1oZgOlQ87lNluNWjpQZCZYXQDkZ9qagM/fUwWVrdNnZVt38/8dX509nkwpxZwD8qsDvvdC4A28SIrlclnqlNyscSppZpJ0yaQI2fc13A5eEW0aZFIh06YoOJoCrDTz54IvfaYmvTKsaetu/hOdrWDWLwpEVp0C/55AHLXOuhA5+NfgiYONfLdi0PhtgcSCcDYa+vVVW/fxn6iNedY+c7OXriCOyTPv85oC2XEGOIK82oWDKoERn8pkArgpwPIiKN7z63Cf1ZOtF0zbStzN/w9SrIy9vXmCQLiBNCMlOS4f23HDiRddQTbGM3JulqTr2mA2BZh3shSUt8ecpr/UYBGfONXLlalh3FbiLv4Tec9g/K9doSxVUQnNKhJd+4AnCcR2mJlxg1yd+e5AHkRzMuIdJ3qphz8jr0Hgyo3BmX/UpsYAW09n+Bk55jXfyS+tvGNwEFIz6VS2tdl/ERnTO+YV3xI7LwTi22Nf5VhdTkPzz7XzpBTLvTRynW9Y3PyeyfSFFM/K2goYvMhj8VMZK5wPBcKUExpnX078VPvrMyKsaIbOsrKt7/jv+se3bd8ZKcH8UiDM2nH5jNfag4A70820F9/TXZkQyF9m1UwMlgiB/FlKulObXoEaIZC/Stl/IL36iBAICBYIgYBggRAICBaIP38QAX/+APABgUSAQAAfEEgECATwAYFEgEAAHxBIBAgE8AGBRIBAAB8QSAQIBPABgUSAQBQ8BvOjx9v96S78O7iGQGgAbvy7oQsMAgSiAAI5E8/lfrPi+N0CeSwDt+F2pxb9MUAg5+F5v1Hn35b7/RqDAIEogEDOgguq4XGZQYBAFEAg5+AxcFo1UGiZLxcWyHN50Aon+yTjJwnB+E2w7VDIwl+R2vi53ZbhobTX9QU//qTP2zNUPuofqTuoSlDVp+W2GXh2jD9rSpz6s+G99j4Gziis7XvgBNmje6GfFDulpu2A8wTyvJvGroNXNZjHQxOIBOFtoMB5POzA02Cvrj7p2sO254cG7c5lmGtTvH0WB8kwELfBvsXR7fqCy5r7ZDMo7/eR68dQjBbWb89PBS/bxhB/pP6SPwZvtteQynF59mEtJvb4nuenK19q36c4SSCuwX46clmBKL6qyKdYdp9F95Igds/Eg7wGTHRdxBDUIcHjVuIVNSlfZdua/NmxvQ5iLzFXmBz2wjkCcR0StOvqAuHBK67nuYDMBbCFDH7Q7mxf6LbabPiobFuTP3u2l+HsmXSKUryA1Ofm3guBf4ATBOICKVb9ZQVCoJnKDAT7zSkDrf2plzmB5K47uHYH/dEUkIy0jpr0yqCmbU3+7NlehrNX4l8SyDqDmDzWIw2Obaz9Hm7Qvgd9k27xpH3GGkxJ8J0pEH7E98nVGU9CBRTbdgWBkL10BXF0JY/AaQJ5Rb2zjkdJIAI+yTF+BgGYC4x8UDP2SLEM/Gfc5wZ9rFDb1uTPnu1llO0djZM26QqKnfQ91AiEnFVm6PxAridFcds4h2Y7H83YAhEor8C5MjVQ2tboz37ttVBFJTCriPt8ACCQCIlAzEmJd7zopSLxDC2BYYOUn5ECEhh8bzv2NN+JSZvfEsgWSIaxcxpq29bsz17tFWz22Fd7jE7/dTbzz30OCCRCuoKkL6jsuw7NTxpIF2BpWyiYIju8D1PtvCkQG/B8P94f5VDZtrf82aO9PlrGYT9cRyAXQV2KdVW4mTa3QQaaAYFE+NUCucgq/JcAgUT4vQKRdKc2vQJqAIFE+LUCkf0H0qtdAYFE+N17EGBvQCARIBDAB/7xahAsEAIBwQIhEBAsEAIBwQIhEBAsEAIBwQIhEBAsEAIBwQIhkL049eaHgt046/fP5Bm+Xbk/GniOQOSP3Kvsl0l75upsDIh57JrKf0QI5G2eKpCu65e+jzkts/bM1QmBhIRAPqATSD8p934rrxwQEMjbhED2IgQSEgL5gL9OIPMyjX2wb+q6MdwreQEx0+euk7Ld0mtBogWQu8b9YmyY5ws2mNSX/VpXREpXTZmorqm399X+1/xKeEB/GKZ2fzoqPynlnX1uw9TbdJVtj0GbyB7dC/2kPe7slynz3D3IOC3T5DiXBuRcSkB1PQUB+8qDSAM3+h3tBswfiN4bnCTgtEAUG2S7xcYPlRvFL1OWg5D7NCy3Pu/6fxWQR9vWqG0RD+kPCuZRRMSiMPtRr3zsa2CfynF59mEViNjje56frnypfT5PFcjWQGFpdjmLrqNphiweHqwDFnW+tDV+Pg5a71qtDRuo0anfOvmkdrdrEjzxieG09Eo9IY/pDzm0SEXrfIrt5Ow7ir1klZT6lclB4zkCUThPznGtUadym4lGbakXagFvmAlGrXyTjVyguoDyA0Cxq56iZev3eUR/ZPrIsd1X6RuyR5nJHJD6R+03nZcRiKFrdK3zXyPNOmuez8s/pS+Jf00BQdTKN9pQV5Bqu+lqUZNeGe7eHy9WLmfrleg3yqpT4K8USGb5vQp5lds2xPqSXxvcavk3bWh7kBrfQkEoK88L7tcfBwmE7KUriGPyjE4I5A3yqUz9gB0lEHeNN79rkNKzJq3wnyXm7PrX3ed30tvP+yPTR45vp1gZey28kECkUblGX4nKbNsUEEStfJMN60NyuqMxa1dmWj4xUnys5uf9sZ6MxeV5z8C2q1coS1VUQrOKRNcyPEEg1GDqID4W3H5eYhtjeLXVw6xq3lGhl1YEs21jQKjlm2zItYjUr7yKBBvoQjBJIBnWiO2o/hCRMdfY2HxL7BTaZLnZY19NCkq+js5m/rmQp6wgNnf1BobJnVI6FTmN6csmm/PXDthRApHgtptkG6wTBYDsQ7yALQWTpLXxDJ3lQf0h9yLbidiFpTatrPS1wGvtQcB61gR9zYqwplnX3vedRQjkl1JSI3VTXTW7OraU/QcJgfxWeqnRth/gFEtSCi2FiSnpTm169e8RAvnNNG+Fo72cEUzl/1MjIkN6lSUEAoIFQiAgWCAEAoIF4s8fRMCfPwB8QCARIBDABwQSAQIBfEAgESAQwAcEEgECAXxAIBEgEMAHBBIBAgF8QCARPhLIYzA/97jhL/n/GZwskCfF1M3+AXzh7bYMD3f7BFxdIM/7DSL8Ik4UyGMZjChIIMN9eTwexPsysGDu5ykEAgF8nCSQ53K/WXFcbZyRYgE+zhHI827SqisGEgQC+DhFIDZNuN7qwcgKhEQ9mFVPoWyaVIE8lyddvwXP0j4r23haXSnN9MveyP5aOivCdD93uw3LIy7mnmeXubzUcWJWe2mcIpDHwIMy0KBw0IXBMNBI5ULnG1AF4oLqhwLuznulOwW85+8ahErwrnsGeda02bY3DXLZl9m6hoEYl1UFsqWs637O8zEoKm1x926mDggkhxMEIoNpyQMaB846I58ATSAi6MArLU3UgvdJgvcD1MAJ4XYPJoPsBpxsUBdZFESYdJvzMejPVSDXXMGvhhMFQjNqMkDbvbMkkgrE+RQF8xrkSvAlAZ5Aa2dl25M6xD9OpyidC0g+xr5X+wgwThWIFgh2tlZmwy+hegXRAi0bfLwPoZWS0xlHm/74NvVVJUFSh5eW5QiBvI0T9yD6En9FgUhQaXuQoA0Z0diyGncUCD2XriCOrqQBBNKEUwSSzZlpKO3qcl5+nE+xtg2zCTCT0rgigiT4tvYMQWFtFZWVIFqpYmTrePGcAAJpwikCkUFKZsvc9S8iFYgNXD5qfYkk+HKrAl1XglpWzyR4aS9xF4EpAZ7d3DPMKuI+MyCQJpwjkHXWY9Ls6o4a5fuZY5ddQYxvHslfe3TrOasE3xr07vj1vqZnzGjWl1MnJq9Ypl/cdxGoGuCy+th65FRQ3qcEZSGQJpwkEIbyYouD6ORx0/YgdoZ27zxM8FGgrxttL1VUg48EFr3443RL3fgzzMlTWP7dF4V2zxSVg0CacKJArolEIKWA0t4zAH8KEEiEWCD5AwUCZuM/DwgkQrKCrPsCTnXkZ/mcYkk6U3l6BPxKQCARtD1Iui8QwZz7uzHgeEAgEVSBAP8sIJAIEAjgA/94NQgWCIGAYIEQCAgWCIGAYIEQCAgWCIGAYIEQCAgWCIGAYIEQCAgWeIJA5mXs/N80aeyWcdaeBcHv8hSBTGO/9L3OzgikXyb1WRD8Lq+VYk29XUH6Sb8Pgl/mpQQy9UivwGvxOgKZR5tedeMya/fPpFvZ+um/y0yfbRpoxdxPsy1D/vfr3oquj+56wNk+H+zBMmVLdaq2iYEPEWVV9uxOfefu06RE3zdbNg3e6iR2Xlsd7YRmbfnXDV09XeAr2aU6fbtdR+n0hSfEywik2Nln0w02B4kZVLNfkuDi7+4zDfa2j4qDgwJ9dM9TuXGalmnaAjoum9RpbG/BlS/vbK8BzoKi7xKEUs7dM22hOjaBeIcoLArX1rVeP/2VSU1JidNsQOxynSO1PfTxqlnDRQQyLb3pqItuztegCgdSAt4Ejh+wudVwnpY5CQTX9rhsps6cbRuQUf+5soFvObuOa5uSoJcx0oI+Hre0TWI3mQALIrsCLyGQdWaNZ8Wr0AVV4l92cHOBozFTNlenWt5dS9JTF6i+f1m7zLLf2jipgZ/UIf6R3ZnSzIDko+r7NXgBgcjMVBNMJzEbVEoAGpYCjfch4zKa1MVPyaKyTQLJrCCajaJA0pk/oHs2aK8ySaTplYxxgRBIhlqnX43ZoGoUCNmxYtD4mUDWflT2IEEqlbXLfEMgqz9Sj9Ynm910BXFcy16LJwsk7tyLMhtULQLZ2hqeBpUDvk4g7hpv5M09S/WEqCiQjC+O2VTYt+k+h3uNst0r81yBuM686vK6MhtULQLJzc50XQuebJ1528EJU45Zu5Zympjc570C+69OZlvbRi3VIxb3mWYVia5dhKcKRAbjkke7PncRiBd87phzDN41fCIQuRax69yRsmfjhUDWNrnn5ZhXbOaek7YZqkLd7HL75Zh7dLbz/pzL8wSSOa68JHcSiLnuBZukWza4PhGIzNDunYcJPhLgegDgTUIvBcK0fvr7pURoMZ3dcrqcvii0e6ZrioN5/iYd/JyloL/4e4arEwL5A1TfRQirVgwwRwjkL1BWCUpv1p9xmBRL0pk41QNrCYH8FZo30v7+RgQzXX+Pd2FCICBYIAQCggVCICBYIP78QQT8+QPABwQSAQIBfEAgESAQwAcEEgECAXxAIBEgEMAHBBIBAgF8QCARIBDABwQS4U8J5DGYn5zc7hf5a+5X86cC5wnk+Vjuw225eb8dut2G5f44t/MgkAMBgdTisQxGFCSQ4b48Ho/lcR9WsQwPV+wEQCAHAgKpw/N+04XwvFuRnKgQCORAQCB1eAx29Uj6CQLZFxDIxzh1BYk7Knf9m1AF4gaWdfukz9u+6UbXnK8k7uHmXVfb8LTPr+UKZb06H7RXk7L3de54Bmkp83ajdNXdNfACMqw3rdNOWpn01rOTx77+bEjt/ty8fvfh7Of7jEH2lL1vbut70h7kudxd55g9yJM7wTWIWlcahqNREggPjPV5WIZ1APi7+0wdPdA96fzsBGAOI2jf9dhElQSf1GnIezWyTfXLYEtAB3s4vu+bCWzYetlv1b/C6p1d8T3s7o/BFidGFK7f1/Kxry/6bLPH9zw/XXmtfScJhGGVvDVI66DvoyiQqBMl4BPfJdhoBg1a9CTxJ010BxZx2UydFm6g42di5Gyo/knw0Gzqrlhk/AtwhD982fVvItrtkCewU+yzzV5irjA5nCcQcsrOnqRmUrk0LL/UfgclgSQCznZsLtg0ZMrm6jSQZygQSsfiWRt6nWqKW/RDcIQ/mX5xaPfV2TPpFKV4AUlw5l4q8HME4hrCDq39ye9FTIcQFSV/C00CoaEzM1mTQDj/vi93ky5YGpE1CYSwTjBETj8oj0hKNgUkI10tatIrg939ebFySQz5fV/sM1l1CryGQMRRPXhsR1UMyEE4VCBkx4pBY6NAHFhsa2DG/Za1kRdwKIhc+/LYz5+DBGIm5XgFcXQlfXxfIJKWZBpePWMdhOMEsok/PIHJiyk/2Cn4VKg+YPICCZ5xnxv0seJzfwo+Et5OsTL2crjoCtLWiD1xnEByMyJd19pcHGwNii9NASkQPzn9y5Wpwef+rCdjcXneM7Dt6hXKQhWVwKwi7rOHU/Yg4qjkqtuxYKZDvogjU6z4KPQenO83CMSswt5RpZfWBK68JRBvfJhJ2xQc5o8Igcix4o55xbfEzguB+PbYVzlq598E5p47Z5NOsLmqNxDsoHk/kGvcd3DsJp2uB0fbNt2ywmkQCNmJX3bxjJ/03ZsCsQHP92tT3SP9sX3m287GyUuBMCp9dThNIFeFKpB/Dk74uQ3yPwQIJAIEQqiaif8NQCARIBBJd847SbwSIJAI/7xAXhzD/2uAQCJgBQF8QCARIBDAB/7xahAsEAIBwQIhEBAsEAIBwQIhEBAsEAIBwQIhEBAsEAIBwQIhkL/AqTc/LuzGWb9/Cc7L1Ht/x70ff8Xfbz9PIPO0jH6H8QDjj96/x18gkHl0Y92NyzSNNPYQSIHT0htRdCQK7jBPLNSBEEkjLy+QeRk7Hu9+mdT71+UpApl6u2L0k3792qnCBflbBPILJ78TBOJWD62z5nHp+B6lWsF1sEwI5DB+XyAiArWzCuI5nTTIwZ6J08N4z0Qb0bG37RN2Ha2USuC6oOZVdNu8dsu4rqrzMlOZzqQmQrKliaBWIC/rZNrNtN+GrqPUaPbL1JeVrCBmnD1clRcTyFVzVdkzsd/90vdEF7hbUIrvXIYCmct4wcNiCmy6YLVksbHNLVhlU8sBN9IejTe2aZ2hrVqB5Orc2sD37N5wEzyVC0RSWXb2fF/bQhOLKrjr8YQUa+vYsMP9e9cSyBqscQCawQ/LpOnhdiARtHcNVq0fiGQ7DaLMCtssEL1OaUMyuyupb0vZdVyRYtVxDSYaqH60M8oYpCZXEkiNaMtlVIHVBnXATD2NAtHLSRCT7ZnSu4AkzCDAW8r65SGQaib5NacloyzFV+rIzKwd8EUZmbn9WbUqqCngzDsDl9YR7SRyhEBcG0pc29dSlgmB7ETX8UmaciZPEgjd31bUmAcKhNqQrgqOb5VlQiD70A3gtU44XDB8NcUSe/EJWKaeXQRSbkPIlrJMVx4C+YDF061zmX2BSfn26AK4VMYKTN+k68GaW5Ho+mECyQhZaFaG7XtLWQikkTaY5CiUjxr5u72mnuicTREvMzrm3dImEQKX2Y55bbuUQHoRrKvg5Kc4pUOMnQTit4HrleNlef8TPtdSFgJpovYC7PI/VDSnM1vA6z5TICgvzmSVCfgyWK0tvz5Ot6xwjhIIM335Z99faM/UloVAQPBPEgIBwQIhEBAsEAIBwQIhEBAsEAIBwQIhEBAsEH/+IAL+/AHgAwKJAIEAPiCQCBAI4AMCiQCBAD4gkAgQCOADAokAgQA+IJAIEAjgAwKJAIEAPr4rkOd9GW78/w0My8NdSvFcHsPN/jF7x9uNyn/pr9prAnneb9aPO/60/r+GrwlEgswyJ5DncjcCIt5uyzAMJCh57rZ8Iz4hkFY8lsGM151G7+/hCwLZgv52f7jPukBWEQ3h3edjUK8fAaRYrYBAPgOlVbd19hexaAKRe9pKUXpuX0AgrYBAdkQp0Msd/Rhy4tkXqkDcCpamWNQe2i+Z1c2Q9k60yoWlPt1TVdZxH4I6TIqqVvI0K/LNjIOQyqodm9q90fjI2NkxUfiFlf5buI5AzEqT71xJv47u+3qBOEEzKeDtfsl+38pJezmoKbAeDy/gasTeUgeXcfs2T5AsJh/rfors3dmfhxycxO3bBBD4TnVsVdvnTV2rPeLLdv0eQCARagWS3biboHEfcz6/aKugpY7UlogrEiI9+0wCWFu93Vi9TJ3KK/9vBwQSoU4ghXaskADjdIrSmoAUVC+Dr6GOTJmswBJoduQaCay4JEAgO6IwoL9KIDVB4cqUWPP8J2Wc32mf8j7kTnsbl7YRTd/H40JjIumXSd/u8d6HAYHsiNKMV+7oa23S24I3XUEcXUkdbXWoZTSB0DUrBo2Zlcjbp6RjUOPn78WFBFIhnswA7okmgRT9KbWnBp/XkaZYUj4+4arzVX8fBYHsiNYBtZDrufRrT9Ru0tcTnshX3gRLzl7cA5hVxH3OoKaOUhkrMH/GzwUzXa8Ss3s+GIdPJ4Jr4wsC4fcAca7Lx57uWpDXyqASo2PNbw1ArUA4P19TldjXNYC29vBRqRyrynsNVTg+Guvwj3nNd2JcR3x0ew/ec3h9bOr2jqe9NCuep8Sm9dG+p/kr+IJAvAFUGQU+z47Ji7HvLd/VAmGY06jY19cvCjmQyidDHirr4D7z67DvObQ6bFnfHqdbNsj9sWjxm33cyr0U/i/Cl1Os60MVCPDPAgKJAIEAPiCQCBAI4AMCiQCBAD4gkAgQCOADAokAgQA+8I9Xg2CBEAgIFgiBgGCBEAgIFgiBgGCBEAgIFgiBgGCBEAgIFgiB7MWpNz/17sZZv/8JNdtH1pfjGXWezO8KZB6XvuP/Z6BfJu2+z5ayVyAE8if5NYHMY2c617Ic9C1lL0MI5E/yCwKZl9GsBNyxk/ucC/qWshcjBPInebxAKFXqfrplnPm7CCAT9C1lr0YI5E/yy5v0lqC/kkDmZRp7Ei/7Y9l1Y+iXFzwzfe6M78xu6bMBRXb7LrJL7TUThMcKgUy9fb6fvOcyZXUe2MbI7k9H5SelvLPPbeB+Edtj0KbKPtuJEEgFJfi6ngJmmuyA0yDblc7RDa4/aL03kGlwSvuojG/XlNdtlwRiV196tp+2Mo7W/8hmxGPbSGRR9FH52NfAPvcLlWcfVoE09NlOhEBe0vlBs+ms3ndcBzcaKAnc6Hk5iEhmfC3QawSS7a9p6ZX6Qx7bxlS0zqfYTs6+Y1Of7UQI5CXFDxo0LS0QakFsqLVDApKuzZSuBKTgMfe8YKsSyBZAr8qlPLCNmfFr97Wxz3YiBFJDmqHsOxkeBM63p3QgmoJHZtAC3xCItlrUpFeGR7UxF7TO1suVcmVjn+1ECKSB8+QFUSY9aA2edDZ09G1otjP1hYJw9TSkHke0cVeB1PbZToRA3iCf4NQPrtaOxrZptnP1+dfdZ/Vk6wWPbuPbKdaX4wECeYvKzNwUPJkAEZoZ0fuu2c7WJzMtnxh90n+ft3E9GYvL856BbVevUJZNfbYTvyAQPrfmwbKUIzlzhMcMct2Wsl+iOSHxjhW9FCSYmRuDZw1AfoZsj8726M7/AztNAtkCydAP8By/0Eb/mFd8S+y8EEhTn+3ELwjE6ySVfqe2lP0W0xdTPDsnpz3NwWPvvW27FExy7BnP0Fke20YOYN82vz9RT8teCoRZ6etO/HKKBX6HbqI54FTnX+L//O//QSB/klUzMfiKEMifpKQ7tekVmCME8hcp+w+kV2+RReETAgFBj6FA/m/5f3eqAc/tQrC+AAAAAElFTkSuQmCC\"> </center>\n",
"\n",
Expand Down Expand Up @@ -189,7 +189,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Using [ArcGIS Maritime](https://desktop.arcgis.com/en/arcmap/latest/extensions/maritime-charting/what-is-the-arcgis-for-maritime-charting-.htm ), we imported [NOAA’s Electronic Navigational Charts](https://www.charts.noaa.gov/ENCs/ENCs.shtml). The maritime data in these charts contain the coastline feature class with the category of coastline details. The Sentinel 2 imagery has been downloaded from the [Copernicus Open Access Hub](https://scihub.copernicus.eu/dhus/).\n",
"Using [ArcGIS Maritime](https://pro.arcgis.com/en/pro-app/latest/help/production/maritime/get-started-with-maritime-charting.htm), we imported [NOAA’s Electronic Navigational Charts](https://www.charts.noaa.gov/ENCs/ENCs.shtml). The maritime data in these charts contain the coastline feature class with the category of coastline details. The Sentinel 2 imagery has been downloaded from the [Copernicus Open Access Hub](https://atlas.co/data-sources/copernicus-open-access-hub/).\n",
"\n",
"Before exporting the data, we will create a grid pattern—illustrated in Figure 2—along the coastline to serve as a feature class during export. To do this, we will use the <b>Generate Rectangles Along Lines</b> tool. The required parameters for this tool are as follows:\n",
"\n",
Expand Down Expand Up @@ -433,7 +433,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"ArcGIS's `arcgis.learn` module allows you to build a Feature Classifier model that can classify individual features based on training data. To understand the inner workings and potential applications of this model, refer to the official guide: [\"How feature classifier works?\"](https://developers.arcgis.com/python/guide/how-feature-categorization-works/)."
"ArcGIS's `arcgis.learn` module allows you to build a Feature Classifier model that can classify individual features based on training data. To understand the inner workings and potential applications of this model, refer to the official guide: [\"How feature classifier works?\"](/guide/how-feature-categorization-works/)."
]
},
{
Expand Down Expand Up @@ -1213,9 +1213,9 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python [conda env:conda-pydl2]",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "conda-env-conda-pydl2-py"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
Expand All @@ -1227,7 +1227,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
"version": "3.13.5"
}
},
"nbformat": 4,
Expand Down