Skip to content

Ewenwan/DeepLearning_tutorials

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep Learning Tutorials with Tensorflow 深度学习

The deeplearning algorithms are carefully implemented by tensorflow.  

Environment

  • Python 3.5
  • tensorflow 1.4
  • pytorch 0.2.0

The deeplearning algorithms includes (now):

  • 逻辑回归 Logistic Regression   logisticRegression.py
  • 多层感知机 Multi-Layer Perceptron (MLP) mlp.py
  • 卷积神经网络 Convolution Neural Network (CNN) cnn.py
  • 自编码 Denoising Aotoencoder (DA) da.py
  • Stacked Denoising Autoencoder (SDA) sda.py
  • 受限玻尔兹曼机Restricted Boltzmann Machine (RBM) [rbm.py    gbrbm.py]
  • 深度信念网络Deep Belief Network (DBN) dbn.py

Note: the project aims at imitating the well-implemented algorithms in Deep Learning Tutorials (coded by Theano).

CNN Models

Object detection

Practical examples

You can find more practical examples with tensorflow here:

Results

1 2 3 4 5

Fun Blogs

Personal Notes

Other Tutorials

Don't hesitate to star this project if it is helpful!

If you benefit from the tutorial, please make a small donation by WeChat sweep.

weichat

微信号:xiaoxiaohu1994

欢迎关注微信公众号:机器学习算法全栈工程师(Jeemy110)

公众号

About

The deeplearning algorithms implemented by tensorflow 深度学习

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 84.4%
  • Python 15.6%