Diffusers-based simple generating image module with upscaling features for jupyter notebook, ipython or python interactive shell
- ☑ Just prepare safetensors files to go
- ☑ Run Hires.fix without AUTOMATIC1111/stable-diffusion-webui
- ☑ Latent Upscaler
- ☒ GAN models
- ☑ Multi-stage upscaling (extension of Hires.fix)
- ☑ LoRA
- ☒ Controlnet
- ☒ Multi-batch generation (Only single generation is supported)
- Add ControlNet (Convert SD safetensors file to diffusers model files)
pip install -r requirements.txt
- Only safetensors file is supported.
- Place the files in the directory of your choice.
Ex.
cd s2d2
jupyter notebook
from s2d2 import StableDiffusionImageGenerator
generator = StableDiffusionImageGenerator(
r"C:\xxx\Counterfeit-V30.safetensors",
)
# Load LoRA (multi files)
generator.load_lora(r"C:\xxx\lora_1.safetensors", alpha=0.2)
generator.load_lora(r"C:\xxx\lora_2.safetensors", alpha=0.15)
image = generator.diffusion_enhance(
prompt,
negative_prompt,
scheduler_name="dpm++_2m_karras", # [1]
num_inference_steps=20, # [2]
num_inference_steps_enhance=20, # [3]
guidance_scale=10, # [4]
width=700, # [5]
height=500, # [6]
seed=-1, # [7]
upscale_target="latent", # [8] "latent" or "pil". pil mode is temporary implemented.
interpolate_mode="bicubic", # [9]
antialias=True, # [10]
upscale_by=1.8, # [11]
enhance_steps=2, # [12] 2=Hires.fix
denoising_strength=0.60, # [13]
output_type="pil", # [14] "latent" or "pil"
decode_factor=0.15, # [15] Denominator when decoding latents. Used to adjust the saturation of the image during decoding.
decode_factor_final=0.18215, # [16] Denominator when decoding final latents.
)
image.save("generated_image.jpg) # or just "image" to display image in jupyter
🚧🚧🚧🚧🚧Under construction🚧🚧🚧🚧🚧
- Available schedulers are:
SCHEDULERS = {
"unipc": diffusers.schedulers.UniPCMultistepScheduler,
"euler_a": diffusers.schedulers.EulerAncestralDiscreteScheduler,
"euler": diffusers.schedulers.EulerDiscreteScheduler,
"ddim": diffusers.schedulers.DDIMScheduler,
"ddpm": diffusers.schedulers.DDPMScheduler,
"deis": diffusers.schedulers.DEISMultistepScheduler,
"dpm2": diffusers.schedulers.KDPM2DiscreteScheduler,
"dpm2-a": diffusers.schedulers.KDPM2AncestralDiscreteScheduler,
"dpm++_2s": diffusers.schedulers.DPMSolverSinglestepScheduler,
"dpm++_2m": diffusers.schedulers.DPMSolverMultistepScheduler,
"dpm++_2m_karras": diffusers.schedulers.DPMSolverMultistepScheduler,
"dpm++_sde": diffusers.schedulers.DPMSolverSDEScheduler,
"dpm++_sde_karras": diffusers.schedulers.DPMSolverSDEScheduler,
"heun": diffusers.schedulers.HeunDiscreteScheduler,
"heun_karras": diffusers.schedulers.HeunDiscreteScheduler,
"lms": diffusers.schedulers.LMSDiscreteScheduler,
"lms_karras": diffusers.schedulers.LMSDiscreteScheduler,
"pndm": diffusers.schedulers.PNDMScheduler,
}
- Used Counterfeit-V30.safetensors
- Initial resolution: 696x496
- Upscale factor: 1.8
- Target resolution: 696x496(x1.8, nearest multiple of 8) = 1248x888
Stepwise upscaling between the initial resolution and the target resolution.
-
Without latent upscaling: Single generation@696x496
-
With latent upcscaling: 2-stage generation(like Hires.fix, 696x496 to 1248x888)
-
Prompt: "1girl, solo, full body, blue eyes, looking at viewer, hairband, bangs, brown hair, long hair, smile, blue eyes, wine-red dress, outdoor, night, moonlight, castle, flowers, garden"
-
Negative prompt: "EasyNegative, extra fingers, fewer fingers, bad hands"