Skip to content

Fake10086/C3L

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

C3L: Content Correlated Vision-Language Instruction Tuning Data Generation via Contrastive Learning

for LLaVA

Following standard LLava repository as below:

Requirements

If you are not using Linux, do NOT proceed, see instructions for macOS and Windows.

  1. Clone our repository and navigate to LLaVA folder
git clone https://github.com/haotian-liu/LLaVA.git
cd LLaVA
  1. Install Package
conda create -n llava python=3.10 -y
conda activate llava
pip install --upgrade pip  # enable PEP 660 support
pip install -e .
  1. Install additional packages for training cases
pip install -e ".[train]"
pip install flash-attn --no-build-isolation

for MiniGPT-4

Following standard MiniGPT-4 repository as below:

Requirements

Git clone our repository and cd MiniGPT-4 folder, creating a python environment and activate it via the following command

git clone https://github.com/Vision-CAIR/MiniGPT-4.git
cd MiniGPT-4
conda env create -f environment.yml
conda activate minigptv

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published