@@ -265,7 +265,7 @@ gaussian_width = 6e3
265
265
gaussian_amplitude = 3.0
266
266
gaussian_bump = @. gaussian_amplitude * exp ( - grid. x^ 2 / (2 * gaussian_width^ 2 ) )
267
267
268
- fig = Figure (resolution = (600 , 260 ))
268
+ fig = Figure (size = (600 , 260 ))
269
269
ax = Axis (fig[1 , 1 ];
270
270
xlabel = " x [km]" ,
271
271
ylabel = " η [m]" ,
@@ -287,7 +287,7 @@ noise_amplitude = 0.1 # the amplitude of the noise for η(x, t=0) (m)
287
287
η_noise = noise_amplitude * Random. randn (size (grid. x))
288
288
@. η_noise *= mask # mask the noise
289
289
290
- fig = Figure (resolution = (600 , 520 ))
290
+ fig = Figure (size = (600 , 520 ))
291
291
292
292
kwargs = (xlabel = " x [km]" , limits = ((- Lx/ 2e3 , Lx/ 2e3 ), nothing ))
293
293
@@ -315,7 +315,7 @@ v0 = zeros(grid.nx)
315
315
316
316
set_uvη! (prob, u0, v0, η0)
317
317
318
- fig = Figure (resolution = (600 , 260 ))
318
+ fig = Figure (size = (600 , 260 ))
319
319
320
320
ax = Axis (fig[1 , 1 ];
321
321
xlabel = " x [km]" ,
@@ -376,7 +376,7 @@ v = @lift irfft(file[string("snapshots/sol/", iterations[$n])][:, 2], nx)
376
376
377
377
toptitle = @lift " t = " * @sprintf (" %.1f" , file[string (" snapshots/t/" , iterations[$ n])]/ 60 ) * " min"
378
378
379
- fig = Figure (resolution = (600 , 800 ))
379
+ fig = Figure (size = (600 , 800 ))
380
380
381
381
kwargs_η = (xlabel = " x [km]" , limits = ((- Lx/ 2e3 , Lx/ 2e3 ), nothing ))
382
382
kwargs_uv = (xlabel = " x [km]" , limits = ((- Lx/ 2e3 , Lx/ 2e3 ), (- 0.3 , 0.3 )))
@@ -430,7 +430,7 @@ nothing # hide
430
430
# The geostrophic solution should capture well the the behavior of the flow in the center
431
431
# of the domain, after small-scale disturbances propagate away. Let's plot and see!
432
432
433
- fig = Figure (resolution = (600 , 600 ))
433
+ fig = Figure (size = (600 , 600 ))
434
434
435
435
kwargs = (xlabel = " x [km]" , limits = ((- Lx/ 2e3 , Lx/ 2e3 ), (- 0.3 , 0.3 )))
436
436
0 commit comments