Skip to content

Files

115 lines (82 loc) · 4.53 KB

multilayerqg.md

File metadata and controls

115 lines (82 loc) · 4.53 KB

MultilayerQG Module

Basic Equations

This module solves the layered quasi-geostrophic equations on a beta-plane of variable fluid depth H - h(x, y). The flow in each layer is obtained through a streamfunction \psi_j as (u_j, \upsilon_j) = (-\partial_y \psi_j, \partial_x \psi_j), j = 1, \dots, n, where n is the number of fluid layers.

The QGPV in each layer is

QGPV j = q j + f 0 + β y planetary PV + δ j , n f 0 h H n topographic PV , j = 1 , , n   .

where q_j incorporates the relative vorticity in each layer \nabla^2\psi_j and the vortex stretching terms:

q 1 = 2 ψ 1 + F 3 / 2 , 1 ( ψ 2 ψ 1 )   ,   q j = 2 ψ j + F j 1 / 2 , j ( ψ j 1 ψ j ) + F j + 1 / 2 , j ( ψ j + 1 ψ j )   , j = 2 , , n 1   ,   q n = 2 ψ n + F n 1 / 2 , n ( ψ n 1 ψ n )   .

with

F j + 1 / 2 , k = f 0 2 g j + 1 / 2 H k and g j + 1 / 2 = g ρ j + 1 ρ j ρ j + 1 .

In view of the relationships above, when we convert to Fourier space q's and \psi's are related via the matrix equation

( q ^ k , 1 q ^ k , n ) = ( | k | 2 1 + F ) S k ( ψ ^ k , 1 ψ ^ k , n )

where

F ( F 3 / 2 , 1 F 3 / 2 , 1 0 0   F 3 / 2 , 2 ( F 3 / 2 , 2 + F 5 / 2 , 2 ) F 5 / 2 , 2   0   0   0 0 F n 1 / 2 , n F n 1 / 2 , n )   .

Including an imposed zonal flow U_j(y) in each layer, the equations of motion are:

t q j + J ( ψ j , q j ) + ( U j y ψ j ) x Q j + U j x q j + ( y Q j ) ( x ψ j ) = δ j , n μ 2 ψ n ν ( 1 ) n ν 2 n ν q j ,

with

y Q j β y 2 U j ( 1 δ j , 1 ) F j 1 / 2 , j ( U j 1 U j ) ( 1 δ j , n ) F j + 1 / 2 , j ( U j + 1 U j ) + δ j , n y η   ,   x Q j δ j , n x η   .

The eddy kinetic energy in each layer and the eddy potential energy that corresponds to each fluid interface is computed via energies():

GeophysicalFlows.MultilayerQG.energies

The lateral eddy fluxes in each layer and the vertical fluxes across fluid interfaces are computed via fluxes():

GeophysicalFlows.MultilayerQG.fluxes

Implementation

Matrices \mathbb{S}_{\boldsymbol{k}} as well as \mathbb{S}^{-1}_{\boldsymbol{k}} are included in params as params.S and params.S⁻¹ respectively. Additionally, the background PV gradients \partial_x Q and \partial_y Q are also included in the params as params.Qx and params.Qy.

You can get \widehat{\psi}_j from \widehat{q}_j with streamfunctionfrompv!(psih, qh, params, grid), while to get \widehat{q}_j from \widehat{\psi}_j you need to call pvfromstreamfunction!(qh, psih, params, grid).

The equations of motion are time-stepped forward in Fourier space:

t q ^ j = J ( ψ j , q j ) ^ U j x Q j ^ U j x q j ^ + ( y ψ j ) x Q j ^ ( x ψ j ) ( y Q j ) ^ + δ j , n μ k 2 ψ ^ n ν k 2 n ν q ^ j   .

In doing so the Jacobian is computed in the conservative form: \mathsf{J}(f,g) = \partial_y [ (\partial_x f) g] -\partial_x[ (\partial_y f) g].

Equations are formulated using q j as the state variables, i.e., sol = qh.

Thus:

L = ν k 2 n ν   ,   N ( q ^ j ) = J ( ψ j , q j ) ^ U j x Q j ^ U j x q j ^ + ( y ψ j ) ( x Q j ) ^ ( x ψ j ) ( y Q j ) ^ + δ j , n μ k 2 ψ ^ n   .

Examples

  • examples/multilayerqg_2layer.jl: A script that simulates the growth and equilibration of baroclinic eddy turbulence in the Phillips 2-layer model.