Skip to content

Commit

Permalink
Merge pull request #173 from FourierFlows/ncc/upsilon-v
Browse files Browse the repository at this point in the history
Changes \upsilon -> v in Docs
  • Loading branch information
navidcy authored Dec 25, 2020
2 parents 8d4cf0f + d1793c7 commit 9ccea29
Show file tree
Hide file tree
Showing 6 changed files with 19 additions and 19 deletions.
8 changes: 4 additions & 4 deletions docs/src/modules/barotropicqgql.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,13 +14,13 @@ where overline above denotes a zonal mean, $\overline{\phi}(y, t) = \int \phi(x,
- Constantinou, N. C., Farrell, B. F., and Ioannou, P. J. (2014). [Emergence and equilibration of jets in beta-plane turbulence: applications of Stochastic Structural Stability Theory.](http://doi.org/10.1175/JAS-D-13-076.1) *J. Atmos. Sci.*, **71 (5)**, 1818-1842.


As in the [BarotropicQG module](barotropicqg.md), the flow is obtained through a streamfunction $\psi$ as $(u, \upsilon) = (-\partial_y\psi, \partial_x\psi)$. All flow fields can be obtained from the quasi-geostrophic potential vorticity (QGPV). Here the QGPV is
As in the [BarotropicQG module](barotropicqg.md), the flow is obtained through a streamfunction $\psi$ as $(u, v) = (-\partial_y\psi, \partial_x\psi)$. All flow fields can be obtained from the quasi-geostrophic potential vorticity (QGPV). Here the QGPV is

$$\underbrace{f_0 + \beta y}_{\text{planetary PV}} + \underbrace{(\partial_x \upsilon
$$\underbrace{f_0 + \beta y}_{\text{planetary PV}} + \underbrace{(\partial_x v
- \partial_y u)}_{\text{relative vorticity}} +
\underbrace{\frac{f_0 h}{H}}_{\text{topographic PV}}.$$

The dynamical variable is the component of the vorticity of the flow normal to the plane of motion, $\zeta\equiv \partial_x \upsilon- \partial_y u = \nabla^2\psi$. Also, we denote the topographic PV with $\eta\equiv f_0 h/H$. After we apply the eddy-mean flow decomposition above, the QGPV dynamics are:
The dynamical variable is the component of the vorticity of the flow normal to the plane of motion, $\zeta\equiv \partial_x v- \partial_y u = \nabla^2\psi$. Also, we denote the topographic PV with $\eta\equiv f_0 h/H$. After we apply the eddy-mean flow decomposition above, the QGPV dynamics are:

$$\partial_t \overline{\zeta} + \mathsf{J}(\overline{\psi}, \underbrace{\overline{\zeta} + \overline{\eta}}_{\equiv \overline{q}}) + \overline{\mathsf{J}(\psi', \underbrace{\zeta' + \eta'}_{\equiv q'})} = \underbrace{-\left[\mu + \nu(-1)^{n_\nu} \nabla^{2n_\nu}
\right] \overline{\zeta} }_{\textrm{dissipation}} \ .$$
Expand All @@ -47,7 +47,7 @@ Thus:

$$\mathcal{L} = \beta\frac{\mathrm{i}k_x}{k^2} - \mu - \nu k^{2n_\nu}\ ,$$
$$\mathcal{N}(\widehat{\zeta}) = - \mathrm{i}k_x \mathrm{FFT}(u q)^{\textrm{QL}}-
\mathrm{i}k_y \mathrm{FFT}(\upsilon q)^{\textrm{QL}}\ .$$
\mathrm{i}k_y \mathrm{FFT}(v q)^{\textrm{QL}}\ .$$


## Examples
Expand Down
2 changes: 1 addition & 1 deletion docs/src/modules/multilayerqg.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

This module solves the layered quasi-geostrophic equations on a beta-plane of variable fluid
depth ``H - h(x, y)``. The flow in each layer is obtained through a streamfunction ``\psi_j`` as
``(u_j, \upsilon_j) = (-\partial_y \psi_j, \partial_x \psi_j)``, ``j = 1, \dots, n``, where ``n``
``(u_j, v_j) = (-\partial_y \psi_j, \partial_x \psi_j)``, ``j = 1, \dots, n``, where ``n``
is the number of fluid layers.

The QGPV in each layer is
Expand Down
6 changes: 3 additions & 3 deletions docs/src/modules/singlelayerqg.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@
### Basic Equations

This module solves the barotropic or equivalent barotropic quasi-geostrophic vorticity equation
on a beta-plane of variable fluid depth ``H - h(x, y)``. The flow is obtained through a streamfunction ``\psi`` as ``(u, \upsilon) = (-\partial_y \psi, \partial_x \psi)``. All flow
on a beta-plane of variable fluid depth ``H - h(x, y)``. The flow is obtained through a streamfunction ``\psi`` as ``(u, v) = (-\partial_y \psi, \partial_x \psi)``. All flow
fields can be obtained from the quasi-geostrophic potential vorticity (QGPV). Here the QGPV is

```math
\underbrace{f_0 + \beta y}_{\text{planetary PV}} + \underbrace{\partial_x \upsilon
\underbrace{f_0 + \beta y}_{\text{planetary PV}} + \underbrace{\partial_x v
- \partial_y u}_{\text{relative vorticity}} - \!\!
\underbrace{\frac{1}{\ell^2} \psi}_{\text{vortex stretching}} \!\! +
\underbrace{\frac{f_0 h}{H}}_{\text{topographic PV}} \ ,
Expand Down Expand Up @@ -64,7 +64,7 @@ Thus:
```math
\begin{aligned}
\mathcal{L} & = \beta \frac{\mathrm{i} k_x}{k^2 + 1/\ell^2} - \mu - \nu k^{2n_\nu} \ , \\
\mathcal{N}(\widehat{q}) & = - \mathrm{i} k_x \mathrm{FFT}[u (q+\eta)] - \mathrm{i} k_y \mathrm{FFT}[\upsilon (q+\eta)] \ .
\mathcal{N}(\widehat{q}) & = - \mathrm{i} k_x \mathrm{FFT}[u (q+\eta)] - \mathrm{i} k_y \mathrm{FFT}[v (q+\eta)] \ .
\end{aligned}
```

Expand Down
6 changes: 3 additions & 3 deletions docs/src/modules/surfaceqg.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ buoyancy $b_s = b(x, y, z=0)$, as described in Capet et al., 2008. The buoyancy
velocity at the surface are related through a streamfunction $\psi$ via:

```math
(u_s, \upsilon_s, b_s) = (-\partial_y \psi, \partial_x \psi, -\partial_z \psi) .
(u_s, v_s, b_s) = (-\partial_y \psi, \partial_x \psi, -\partial_z \psi) .
```

The SQG model evolves the surface buoyancy,
Expand Down Expand Up @@ -46,9 +46,9 @@ In doing so the Jacobian is computed in the conservative form: $\mathsf{J}(f,g)
Thus:
```math
\begin{aligned}
\widehat{u} &= \frac{\mathrm{i} k_y}{k} \widehat{b_s}, \qquad \widehat{\upsilon} = -\frac{\mathrm{i} k_x}{k} \widehat{b_s}, \\
\widehat{u} &= \frac{\mathrm{i} k_y}{k} \widehat{b_s}, \qquad \widehat{v} = -\frac{\mathrm{i} k_x}{k} \widehat{b_s}, \\
\mathcal{L} & = - \nu k^{2n_\nu},\\
\mathcal{N}(\widehat{b_s}) & = - \mathrm{i} k_x \mathrm{FFT}(u b) - \mathrm{i} k_y \mathrm{FFT}(\upsilon b) .
\mathcal{N}(\widehat{b_s}) & = - \mathrm{i} k_x \mathrm{FFT}(u b) - \mathrm{i} k_y \mathrm{FFT}(v b) .
\end{aligned}
```

Expand Down
12 changes: 6 additions & 6 deletions docs/src/modules/twodnavierstokes.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,9 @@
### Basic Equations

This module solves two-dimensional incompressible turbulence. The flow is given
through a streamfunction $\psi$ as $(u,\upsilon) = (-\partial_y\psi, \partial_x\psi)$.
through a streamfunction $\psi$ as $(u,v) = (-\partial_y\psi, \partial_x\psi)$.
The dynamical variable used here is the component of the vorticity of the flow
normal to the plane of motion, $\zeta=\partial_x \upsilon- \partial_y u = \nabla^2\psi$.
normal to the plane of motion, $\zeta=\partial_x v- \partial_y u = \nabla^2\psi$.
The equation solved by the module is:

$$\partial_t \zeta + \mathsf{J}(\psi, \zeta) = \underbrace{-\left[\mu(-1)^{n_\mu} \nabla^{2n_\mu}
Expand All @@ -31,7 +31,7 @@ Thus:

$$\mathcal{L} = -\mu k^{-2n_\mu} - \nu k^{2n_\nu}\ ,$$
$$\mathcal{N}(\widehat{\zeta}) = - \mathrm{i}k_x \mathrm{FFT}(u \zeta)-
\mathrm{i}k_y \mathrm{FFT}(\upsilon \zeta) + \widehat{f}\ .$$
\mathrm{i}k_y \mathrm{FFT}(v \zeta) + \widehat{f}\ .$$


### AbstractTypes and Functions
Expand All @@ -53,11 +53,11 @@ For the forced case ($f\ne 0$) parameters AbstractType is build with `ForcedPara
For the unforced case ($f=0$) variables AbstractType is build with `Vars` and it includes:
- `zeta`: Array of Floats; relative vorticity.
- `u`: Array of Floats; $x$-velocity, $u$.
- `v`: Array of Floats; $y$-velocity, $\upsilon$.
- `v`: Array of Floats; $y$-velocity, $v$.
- `sol`: Array of Complex; the solution, $\widehat{\zeta}$.
- `zetah`: Array of Complex; the Fourier transform $\widehat{\zeta}$.
- `uh`: Array of Complex; the Fourier transform $\widehat{u}$.
- `vh`: Array of Complex; the Fourier transform $\widehat{\upsilon}$.
- `vh`: Array of Complex; the Fourier transform $\widehat{v}$.

For the forced case ($f\ne 0$) variables AbstractType is build with `ForcedVars`. It includes all variables in `Vars` and additionally:
- `Fh`: Array of Complex; the Fourier transform $\widehat{f}$.
Expand All @@ -73,7 +73,7 @@ The nonlinear term $\mathcal{N}(\widehat{\zeta})$ is computed via functions:

- `calcN_forced!`: computes $- \widehat{\mathsf{J}(\psi, \zeta)}$ via `calcN_advection!` and then adds to it the forcing $\widehat{f}$ computed via `calcF!` function. Also saves the solution $\widehat{\zeta}$ of the previous time-step in array `prevsol`.

- `updatevars!`: uses `sol` to compute $\zeta$, $u$, $\upsilon$, $\widehat{u}$, and $\widehat{\upsilon}$ and stores them into corresponding arrays of `Vars`/`ForcedVars`.
- `updatevars!`: uses `sol` to compute $\zeta$, $u$, $v$, $\widehat{u}$, and $\widehat{v}$ and stores them into corresponding arrays of `Vars`/`ForcedVars`.


## Examples
Expand Down
4 changes: 2 additions & 2 deletions src/multilayerqg.jl
Original file line number Diff line number Diff line change
Expand Up @@ -612,14 +612,14 @@ verticalfluxes``_{3/2},...,``verticalfluxes``_{n-1/2}``, where ``n`` is the tota
The lateral eddy fluxes whithin the ``j``-th fluid layer are
```math
\\textrm{lateralfluxes}_j = \\frac{H_j}{H} \\int U_j \\, \\upsilon_j \\, \\partial_y u_j
\\textrm{lateralfluxes}_j = \\frac{H_j}{H} \\int U_j \\, v_j \\, \\partial_y u_j
\\frac{\\mathrm{d}^2 \\boldsymbol{x}}{L_x L_y} \\ , \\quad j = 1, \\dots, n \\ ,
```
while the vertical eddy fluxes at the ``j+1/2``-th fluid interface (i.e., interface between
the ``j``-th and ``(j+1)``-th fluid layer) are
```math
\\textrm{verticalfluxes}_{j+1/2} = \\int \\frac{f_0^2}{g'_{j+1/2} H} (U_j - U_{j+1}) \\,
\\upsilon_{j+1} \\, \\psi_{j} \\frac{\\mathrm{d}^2 \\boldsymbol{x}}{L_x L_y} \\ , \\quad
v_{j+1} \\, \\psi_{j} \\frac{\\mathrm{d}^2 \\boldsymbol{x}}{L_x L_y} \\ , \\quad
j = 1 , \\dots , n-1.
```
"""
Expand Down

0 comments on commit 9ccea29

Please sign in to comment.