A comprehensive Python project demonstrating data analysis techniques using Pandas and data visualization with Matplotlib. This assignment analyzes the classic Iris dataset to showcase statistical analysis, data manipulation, and various visualization techniques.
- Overview
- Features
- Installation
- Usage
- Dataset
- Analysis Components
- Visualizations
- Key Findings
- File Structure
- Requirements
- Troubleshooting
- Contributing
- License
This project fulfills an academic assignment focused on:
- Data Loading & Exploration: Reading and understanding dataset structure
- Statistical Analysis: Computing descriptive statistics and group comparisons
- Data Visualization: Creating multiple chart types for data insights
- Pattern Recognition: Identifying correlations and trends in the data
- Complete Data Pipeline: From raw data loading to final insights
- Multiple Visualization Types: 6 different chart types for comprehensive analysis
- Statistical Analysis: Descriptive statistics, correlation analysis, and hypothesis testing
- Clean Code Structure: Well-documented, professional Python code
- Error Handling: Robust data validation and missing value detection
- Publication-Ready Plots: High-quality visualizations with proper labels and styling
- Python 3.7 or higher
- pip package manager
# Clone or download the project files
# Install required packages
pip install pandas matplotlib seaborn numpy scikit-learn scipy
pip install -r requirements.txt
python -c "import pandas, matplotlib, seaborn, numpy, sklearn, scipy; print('β
All packages installed!')"
# Navigate to project directory
cd path/to/project
# Run the analysis
python data_analysis_assignment.py
- Open
data_analysis_assignment.py
in VS Code - Press
Ctrl + F5
or click theβΆοΈ Run button - View output in terminal and plot windows
# Start Jupyter
jupyter notebook
# Open notebook and run cells
Dataset: Iris Flower Dataset
- Source: UCI Machine Learning Repository (via scikit-learn)
- Samples: 150 flowers (50 per species)
- Features: 4 numerical measurements
- Sepal Length (cm)
- Sepal Width (cm)
- Petal Length (cm)
- Petal Width (cm)
- Target: 3 flower species (Setosa, Versicolor, Virginica)
- Quality: No missing values, well-balanced dataset
- β Dataset loading using scikit-learn
- β
Data structure analysis (
shape
,info
,head
) - β Missing value detection
- β Data type validation
- β
Descriptive statistics (
describe()
) - β Group analysis by species
- β Mean comparisons across categories
- β Range and distribution analysis
- β Correlation matrix computation
- β Line Chart: Trend analysis over sample indices
- β Bar Chart: Species comparison of average measurements
- β Histogram: Distribution analysis of sepal width
- β Scatter Plot: Relationship between sepal and petal length
- β Box Plot: Petal width distribution by species
- β Heatmap: Correlation matrix visualization
The project generates 6 comprehensive visualizations:
- Trends Over Time: Line plot showing sepal vs petal length patterns
- Species Comparison: Bar chart of average measurements by species
- Distribution Analysis: Histogram of sepal width distribution
- Correlation Analysis: Scatter plot with species-specific coloring
- Statistical Comparison: Box plots showing distribution differences
- Feature Relationships: Correlation heatmap with coefficient values
- Strongest Correlation: Petal length and petal width (r = 0.963)
- Species Distinction: Virginica has the largest average petal area
- Data Quality: Complete dataset with no missing values
- Balance: Perfectly balanced with 50 samples per species
- Variability: Petal measurements show highest variability across species
Data_Analysis_Assignment/
β
βββ data_analysis_assignment.py # Main analysis script
βββ requirements.txt # Package dependencies
βββ README.md # Project documentation
βββ outputs/ # Generated plots and results
βββ analysis_plots.png # Combined visualization
βββ summary_statistics.txt # Analysis summary
pandas>=1.3.0
matplotlib>=3.5.0
seaborn>=0.11.0
numpy>=1.21.0
scikit-learn>=1.0.0
scipy>=1.7.0
Issue: "pip is not recognized"
# Solution: Use python -m pip
python -m pip install pandas matplotlib seaborn numpy scikit-learn scipy
Issue: "Permission denied"
# Solution: Use --user flag
pip install --user pandas matplotlib seaborn numpy scikit-learn scipy
Issue: "Python not found"
# Solution: Try python3
python3 -m pip install pandas matplotlib seaborn numpy scikit-learn scipy
Issue: Plots not displaying
# Solution: Install GUI backend
pip install PyQt5
# Or run with:
matplotlib.use('TkAgg')
- Check if all packages are installed correctly
- Verify Python version (3.7+)
- Ensure you're in the correct directory
- Check for any error messages in the output
This project demonstrates:
- Data Science Workflow: Complete pipeline from data to insights
- Python Libraries: Practical use of pandas, matplotlib, seaborn
- Statistical Concepts: Correlation, distribution, hypothesis testing
- Best Practices: Code organization, documentation, error handling
- Visualization Design: Effective chart selection and styling
- Download all project files
- Install required packages:
pip install pandas matplotlib seaborn numpy scikit-learn scipy
- Run the script:
python data_analysis_assignment.py
- View the generated plots and terminal output
- Analyze the insights and statistical findings
When you run the script, you'll see:
- Detailed data exploration results
- Statistical summary tables
- 6 professional visualizations
- Key insights and correlations
- Performance metrics and analysis
Execution Time: ~30-60 seconds Output: Console logs + 6 plot windows
Created as part of a Python data analysis course assignment focusing on pandas and matplotlib proficiency.
This project fulfills all assignment requirements:
- β Load and analyze dataset using pandas
- β Create simple plots and charts with matplotlib
- β Include data loading and exploration steps
- β Perform basic data analysis with results
- β Generate visualizations with proper labels
- β Document findings and observations
Ready to explore the data? Run the script and discover the insights hidden in the Iris dataset! πΈπ