Skip to content

DRL-M4MR: An intelligent multicast routing approach based on DQN deep reinforcement learning in SDN

Notifications You must be signed in to change notification settings

GuetYe/DRL-M4MR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 

Repository files navigation

DRL-M4MR: An intelligent multicast routing approach based on DQN deep reinforcement learning in SDN

Traditional multicast routing methods have some problems in constructing a multicast tree. These problems include limited access to network state information, poor adaptability to dynamic and complex changes in the network, and inflexible data forwarding. To address these defects, the optimal multicast routing problem in software-defined networking (SDN) is tailored as a multiobjective optimization problem, and DRL-M4MR, an intelligent multicast routing algorithm based on the deep Q network (DQN) deep reinforcement learning (DRL) method is designed to construct a multicast tree in a software-defined network. First, combining the characteristics of SDN global network-aware information, the multicast tree state matrix, link bandwidth matrix, link delay matrix and link packet loss rate matrix are designed as the state space of the reinforcement learning agent to solve the problem in that the original method cannot make full use of network status information. Second, the action space of the agent is all the links in the network, and the action selection strategy is designed to add the links to the current multicast tree in four cases. Third, single-step and final reward function forms are designed to guide the agent to make decisions to construct the optimal multicast tree. The double network architectures, dueling network architectures and prioritized experience replay are adopted to improve the learning efficiency and convergence of the agent. Finally, after the DRL-M4MR agent is trained, the SDN controller installs the multicast flow entries by reversely traversing the multicast tree to the SDN switches to implement intelligent multicast routing. The experimental results show that, compared with existing algorithms, the multicast tree constructed by DRL-M4MR can obtain better bandwidth, delay, and packet loss rate performance after training, and it can make more intelligent multicast routing decisions in a dynamic network environment.

About

DRL-M4MR: An intelligent multicast routing approach based on DQN deep reinforcement learning in SDN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages