Developing Web API with FastAPI and Python for Machine Learning Algorithms
Different demos about developing and implement of Web API with FastAPI and Python for Machine Learning Algorithms, for example: hello word, lineal regression, multiple regression and others.
- cd FastAPI-and-Python -> directory access main.
- mkdir 001-Demo-Hello-World -> creating directory 001-Demo-Hello-World.
- cd 001-Demo-Hello-World -> directory access 001-Demo-Hello-World.
- new-item app.py -> creating file python
- pip install fastapi uvicorn -> install FastAPI and uvicorn
- python -m uvicorn app:app --reload -> Execute server
- cd FastAPI-and-Python -> directory access main.
- mkdir 002-demo-path-parameter -> creating directory 001-Demo-Hello-World.
- cd 002-demo-path-parameter -> directory access 002-demo-path-parameter.
- new-item app.py -> creating file python
- pip install fastapi uvicorn -> install FastAPI and uvicorn
- python -m uvicorn app:app --reload -> Execute server
- python -m venv env -> Create virtual environment
- python -m uvicorn app:app --reload -> Execute server
- Remove-Item 001-Demo-Hello-World -> Delete file or directory
- python -m pip install --upgrade pip -> Updating pip