Skip to content

HanLingsgjk/zipnerf-pytorch

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ZipNeRF

An unofficial pytorch implementation of "Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields" https://arxiv.org/abs/2304.06706. This work is based on multinerf, so features in refnerf,rawnerf,mipnerf360 are also available.

News

  • (2024.2.2) Add support for nerfstudio, credits to Ling Jing.
  • (2024.12.8) Add support for Intel's DPC++ backend, credits to Zong Wei.
  • (2023.6.22) Add extracting mesh through tsdf; add gradient scaling for near plane floaters.
  • (2023.5.26) Implement the latest version of ZipNeRF https://arxiv.org/abs/2304.06706.
  • (2023.5.22) Add extracting mesh; add logging,checkpointing system

Results

New results(5.27): Pretrained weights

360_v2:

360_v2_0527.mp4

360_v2_glo:(fewer floaters, but worse metric)

360_v2_glo.mp4

mesh results(5.27):

mesh

Mipnerf360(PSNR):

bicycle garden stump room counter kitchen bonsai
Paper 25.80 28.20 27.55 32.65 29.38 32.50 34.46
This repo 25.44 27.98 26.75 32.13 29.10 32.63 34.20

Blender(PSNR):

chair drums ficus hotdog lego materials mic ship
Paper 34.84 25.84 33.90 37.14 34.84 31.66 35.15 31.38
This repo 35.26 25.51 32.66 36.56 35.04 29.43 34.93 31.38

For Mipnerf360 dataset, the model is trained with a downsample factor of 4 for outdoor scene and 2 for indoor scene(same as in paper). Training speed is about 1.5x slower than paper(1.5 hours on 8 A6000).

The hash decay loss seems to have little effect(?), as many floaters can be found in the final results in both experiments (especially in Blender).

Install CUDA backend

# Clone the repo.
git clone https://github.com/SuLvXiangXin/zipnerf-pytorch.git
cd zipnerf-pytorch

# Make a conda environment.
conda create --name zipnerf python=3.9
conda activate zipnerf

# Install requirements.
pip install -r requirements.txt

# Install other cuda extensions
pip install ./extensions/cuda

# Install nvdiffrast (optional, for textured mesh)
git clone https://github.com/NVlabs/nvdiffrast
pip install ./nvdiffrast

# Install a specific cuda version of torch_scatter 
# see more detail at https://github.com/rusty1s/pytorch_scatter
CUDA=cu117
pip install torch-scatter -f https://data.pyg.org/whl/torch-2.0.0+${CUDA}.html

Install DPCPP backend

  # Install drivers, oneAPI and ipex for Intel GPUs
  Following the steps in the below page to install gpu drivers, oneAPI BaseKit, and pytorch+ipex (abbr. intel-extension-for-pytorch):
  https://intel.github.io/intel-extension-for-pytorch/xpu/1.13.120+xpu/tutorials/installation.html
  For pytorch and Ipex versions, please install the version 1.13.120 with

  python -m pip install torch==1.13.0a0+git6c9b55e intel_extension_for_pytorch==1.13.120+xpu -f https://developer.intel.com/ipex-whl-stable-xpu

  After the installation is done, make sure it is successfully by running the example provided by
  https://github.com/intel/intel-extension-for-pytorch/tree/release/xpu/1.13.120#inference-on-gpu

Preparing environment

  export DPCPP_HOME=path/to/llvm  # path to the folder for llvm, default value:~
  bash scripts/set_dpcpp_env.sh intel # for intel's gpu
  bash scripts/set_dpcpp_env.sh nvidia # for nvidia's gpu

Reference of DPCPP support for CUDA

  https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#build-dpc-toolchain-with-support-for-nvidia-cuda

Dataset

mipnerf360

refnerf

nerf_synthetic

nerf_llff_data

mkdir data
cd data

# e.g. mipnerf360 data
wget http://storage.googleapis.com/gresearch/refraw360/360_v2.zip
unzip 360_v2.zip

Train

# Configure your training (DDP? fp16? ...)
# see https://huggingface.co/docs/accelerate/index for details
accelerate config

# Where your data is 
DATA_DIR=data/360_v2/bicycle
EXP_NAME=360_v2/bicycle

# Experiment will be conducted under "exp/${EXP_NAME}" folder
# "--gin_configs=configs/360.gin" can be seen as a default config 
# and you can add specific config useing --gin_bindings="..." 
accelerate launch train.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
    --gin_bindings="Config.factor = 4"

# or you can also run without accelerate (without DDP)
CUDA_VISIBLE_DEVICES=0 python train.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
      --gin_bindings="Config.factor = 4" 

# alternatively you can use an example training script 
bash scripts/train_360.sh

# blender dataset
bash scripts/train_blender.sh

# metric, render image, etc can be viewed through tensorboard
tensorboard --logdir "exp/${EXP_NAME}"

Train & Render with DPCPP backend

# add config in command line
      --gin_bindings="Config.dpcpp_backend = True" \

Render

Rendering results can be found in the directory exp/${EXP_NAME}/render

accelerate launch render.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
    --gin_bindings="Config.render_path = True" \
    --gin_bindings="Config.render_path_frames = 480" \
    --gin_bindings="Config.render_video_fps = 60" \
    --gin_bindings="Config.factor = 4"  

# alternatively you can use an example rendering script 
bash scripts/render_360.sh

Evaluate

Evaluating results can be found in the directory exp/${EXP_NAME}/test_preds

# using the same exp_name as in training
accelerate launch eval.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
    --gin_bindings="Config.factor = 4"


# alternatively you can use an example evaluating script 
bash scripts/eval_360.sh

Use NerfStudio

https://github.com/nerfstudio-project/nerfstudio
Nerfstudio provides a simple API that allows for a simplified end-to-end process of creating, training, and testing NeRFs. The library supports a more interpretable implementation of NeRFs by modularizing each component. You can use the viewer provided by nerfstudio to view the render results during the training process.

Install

pip install nerfstudio  
# cd zipnerf-pytorch
pip install -e . 
ns-install-cli

Train & eval

ns-train zipnerf --data {DATA_DIR/SCENE}
ns-eval --load-config {outputs/SCENE/zipnerf/EXP_DIR/config.yml}

ns-train zipnerf -h  # show the full list of model configuration options.
ns-train zipnerf colmap -h  # dataparset configuration options

*Nerfstudio's ColmapDataParser rounds down the image size when downscaling, which is different from the 360_v2 dataset.You can use nerfstudio to reprocess the data or modify the code logic for downscale in the library as dicussed in nerfstudio-project/nerfstudio#1438.
*Nerfstudio's train/eval division strategy is different from this repo. Final training and evaluation results may vary.

For more usage or information, please see https://github.com/nerfstudio-project/nerfstudio.

Configuration

for Zipnerf-pytorch

You can create a new .gin file and pass in the 'gin_file' list in ZipNerfModelConfig of zipnerf_ns/zipnerf_config.py or update the contents of the default .gin file.

for nerfstudio

ns-train zipnerf -h
ns-train zipnerf colmap -h

You can modify zipnerf_ns/zipnerf_config.py, or use the instruction.

Viewer

Given a pretrained model checkpoint, you can start the viewer by running

ns-viewer --load-config outputs/SCENE/zipnerf/EXP_TIME/config.yml  

Remote Server

If you are running on a remote machine, you will need to port forward the websocket port (defaults to 7007). SSH must be set up on the remote machine. Then run the following on this machine:

ssh -L <port>:localhost:<port> USER@REMOTE.SERVER.IP

Extract mesh

Mesh results can be found in the directory exp/${EXP_NAME}/mesh

# more configuration can be found in internal/configs.py
accelerate launch extract.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
    --gin_bindings="Config.factor = 4"
#    --gin_bindings="Config.mesh_radius = 1"  # (optional) smaller for more details e.g. 0.2 in bicycle scene
#    --gin_bindings="Config.isosurface_threshold = 20"  # (optional) empirical value
#    --gin_bindings="Config.mesh_voxels=134217728"  # (optional) number of voxels used to extract mesh, e.g. 134217728 equals to 512**3 . Smaller values may solve OutoFMemoryError
#    --gin_bindings="Config.vertex_color = True"  # (optional) saving mesh with vertex color instead of atlas which is much slower but with more details.
#    --gin_bindings="Config.vertex_projection = True"  # (optional) use projection for vertex color

# or extracting mesh using tsdf method
accelerate launch tsdf.py \
    --gin_configs=configs/360.gin \
    --gin_bindings="Config.data_dir = '${DATA_DIR}'" \
    --gin_bindings="Config.exp_name = '${EXP_NAME}'" \
    --gin_bindings="Config.factor = 4"

# alternatively you can use an example script 
bash scripts/extract_360.sh

OutOfMemory

you can decrease the total batch size by adding e.g. --gin_bindings="Config.batch_size = 8192" , or decrease the test chunk size by adding e.g. --gin_bindings="Config.render_chunk_size = 8192" , or use more GPU by configure accelerate config .

Preparing custom data

More details can be found at https://github.com/google-research/multinerf

DATA_DIR=my_dataset_dir
bash scripts/local_colmap_and_resize.sh ${DATA_DIR}

TODO

  • Add MultiScale training and testing

Citation

@misc{barron2023zipnerf,
      title={Zip-NeRF: Anti-Aliased Grid-Based Neural Radiance Fields}, 
      author={Jonathan T. Barron and Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman},
      year={2023},
      eprint={2304.06706},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

@misc{multinerf2022,
      title={{MultiNeRF}: {A} {Code} {Release} for {Mip-NeRF} 360, {Ref-NeRF}, and {RawNeRF}},
      author={Ben Mildenhall and Dor Verbin and Pratul P. Srinivasan and Peter Hedman and Ricardo Martin-Brualla and Jonathan T. Barron},
      year={2022},
      url={https://github.com/google-research/multinerf},
}

@Misc{accelerate,
  title =        {Accelerate: Training and inference at scale made simple, efficient and adaptable.},
  author =       {Sylvain Gugger, Lysandre Debut, Thomas Wolf, Philipp Schmid, Zachary Mueller, Sourab Mangrulkar},
  howpublished = {\url{https://github.com/huggingface/accelerate}},
  year =         {2022}
}

@misc{torch-ngp,
    Author = {Jiaxiang Tang},
    Year = {2022},
    Note = {https://github.com/ashawkey/torch-ngp},
    Title = {Torch-ngp: a PyTorch implementation of instant-ngp}
}

Acknowledgements

This work is based on my another repo https://github.com/SuLvXiangXin/multinerf-pytorch, which is basically a pytorch translation from multinerf

  • Thanks to multinerf for amazing multinerf(MipNeRF360,RefNeRF,RawNeRF) implementation
  • Thanks to accelerate for distributed training
  • Thanks to torch-ngp for super useful hashencoder
  • Thanks to Yurui Chen for discussing the details of the paper.

About

Unofficial implementation of ZipNeRF

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 78.7%
  • C++ 9.6%
  • Cuda 7.1%
  • Shell 3.7%
  • Other 0.9%