Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adds ONNX Surrogate support from OMLT #1308

Merged
merged 27 commits into from
Nov 4, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
27 commits
Select commit Hold shift + click to select a range
aa91b43
fist commit
avdudchenko Dec 20, 2023
0a54049
added tests
avdudchenko Dec 21, 2023
44372d5
undid test issues
avdudchenko Dec 21, 2023
c71ca74
added direct load test
avdudchenko Dec 21, 2023
8cef183
adde method tosave model to mirror keras
avdudchenko Dec 21, 2023
12b3251
fixed acidental delet
avdudchenko Dec 21, 2023
3d56b81
Speling fixes and doc updates
avdudchenko Dec 21, 2023
975ecd6
clean up imports
avdudchenko Dec 21, 2023
8020526
Update pytest.ini
avdudchenko Dec 21, 2023
30d45ae
fix spelling in utility_minimi...
avdudchenko Jan 4, 2024
f0869f2
Fixed onnx dependancy
avdudchenko Jan 4, 2024
7ba2ba6
Merge branch 'main' into onnx_surrogate
rundxdi Feb 15, 2024
33d765c
Merge branch 'main' into onnx_surrogate
ksbeattie Sep 3, 2024
baf6546
Merge branch 'main' into onnx_surrogate
lbianchi-lbl Sep 5, 2024
6ebe52d
lint and rst fixes
avdudchenko Sep 26, 2024
0547aa1
Merge branch 'onnx_surrogate' of https://github.com/avdudchenko/idaes…
avdudchenko Sep 26, 2024
241ae73
fix gitignore
avdudchenko Sep 26, 2024
4ffdd5e
pylint and sphynix #2
avdudchenko Sep 26, 2024
16871cd
fixing rst
avdudchenko Sep 26, 2024
2d35aa2
doc string fix
avdudchenko Sep 26, 2024
4d632d6
Merge branch 'main' into onnx_surrogate
avdudchenko Sep 26, 2024
05ff135
Merge branch 'main' into onnx_surrogate
avdudchenko Oct 2, 2024
d4fb28d
updates to comments
avdudchenko Oct 18, 2024
cf64637
Merge branch 'main' into onnx_surrogate
avdudchenko Oct 18, 2024
ef3bf7b
linting fixe
avdudchenko Oct 18, 2024
1084f5c
added onnx to distro
avdudchenko Oct 18, 2024
883bdae
Merge branch 'main' into onnx_surrogate
andrewlee94 Nov 4, 2024
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
112 changes: 7 additions & 105 deletions idaes/core/surrogate/keras_surrogate.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,23 +17,21 @@
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

from enum import Enum
import json
import os.path

import numpy as np
import pandas as pd

from pyomo.common.dependencies import attempt_import

from idaes.core.surrogate.base.surrogate_base import SurrogateBase
from idaes.core.surrogate.sampling.scaling import OffsetScaler

from idaes.core.surrogate.omlt_base_surrogate_class import OMLTSurrogate

keras, keras_available = attempt_import("tensorflow.keras")
omlt, omlt_available = attempt_import("omlt")

if omlt_available:
from omlt import OmltBlock, OffsetScaling
from omlt.neuralnet.nn_formulation import (
FullSpaceSmoothNNFormulation,
ReducedSpaceSmoothNNFormulation,
Expand All @@ -45,7 +43,7 @@
from omlt.io import load_keras_sequential


class KerasSurrogate(SurrogateBase):
class KerasSurrogate(OMLTSurrogate):
def __init__(
self,
keras_model,
Expand Down Expand Up @@ -87,52 +85,11 @@ def __init__(
input_labels=input_labels,
output_labels=output_labels,
input_bounds=input_bounds,
input_scaler=input_scaler,
output_scaler=output_scaler,
)

# make sure we are using the standard scaler
if (
input_scaler is not None
and not isinstance(input_scaler, OffsetScaler)
or output_scaler is not None
and not isinstance(output_scaler, OffsetScaler)
):
raise NotImplementedError("KerasSurrogate only supports the OffsetScaler.")

# check that the input labels match
if input_scaler is not None and input_scaler.expected_columns() != input_labels:
raise ValueError(
"KerasSurrogate created with input_labels that do not match"
" the expected columns in the input_scaler.\n"
"input_labels={}\n"
"input_scaler.expected_columns()={}".format(
input_labels, input_scaler.expected_columns()
)
)

# check that the output labels match
if (
output_scaler is not None
and output_scaler.expected_columns() != output_labels
):
raise ValueError(
"KerasSurrogate created with output_labels that do not match"
" the expected columns in the output_scaler.\n"
"output_labels={}\n"
"output_scaler.expected_columns()={}".format(
output_labels, output_scaler.expected_columns()
)
)

self._input_scaler = input_scaler
self._output_scaler = output_scaler
self._keras_model = keras_model

class Formulation(Enum):
FULL_SPACE = 1
REDUCED_SPACE = 2
RELU_BIGM = 3
RELU_COMPLEMENTARITY = 4

def populate_block(self, block, additional_options=None):
"""
Method to populate a Pyomo Block with the keras model constraints.
Expand All @@ -149,37 +106,7 @@ def populate_block(self, block, additional_options=None):
formulation = additional_options.pop(
"formulation", KerasSurrogate.Formulation.FULL_SPACE
)
offset_inputs = np.zeros(self.n_inputs())
factor_inputs = np.ones(self.n_inputs())
offset_outputs = np.zeros(self.n_outputs())
factor_outputs = np.ones(self.n_outputs())
if self._input_scaler:
offset_inputs = self._input_scaler.offset_series()[
self.input_labels()
].to_numpy()
factor_inputs = self._input_scaler.factor_series()[
self.input_labels()
].to_numpy()
if self._output_scaler:
offset_outputs = self._output_scaler.offset_series()[
self.output_labels()
].to_numpy()
factor_outputs = self._output_scaler.factor_series()[
self.output_labels()
].to_numpy()

# build the OMLT scaler object
omlt_scaling = OffsetScaling(
offset_inputs=offset_inputs,
factor_inputs=factor_inputs,
offset_outputs=offset_outputs,
factor_outputs=factor_outputs,
)

# omlt takes *scaled* input bounds as a dictionary with int keys
input_bounds = dict(enumerate(self.input_bounds().values()))
scaled_input_bounds = omlt_scaling.get_scaled_input_expressions(input_bounds)
scaled_input_bounds = {i: tuple(bnd) for i, bnd in scaled_input_bounds.items()}
omlt_scaling, scaled_input_bounds = self.generate_omlt_scaling_objecets()

net = load_keras_sequential(
self._keras_model,
Expand All @@ -201,32 +128,7 @@ def populate_block(self, block, additional_options=None):
"KerasSurrogate.populate_block. Please pass a valid "
"formulation.".format(formulation)
)
block.nn = OmltBlock()
block.nn.build_formulation(
formulation_object,
)

# input/output variables need to be constrained to be equal
# auto-created variables that come from OMLT.
input_idx_by_label = {s: i for i, s in enumerate(self._input_labels)}
input_vars_as_dict = block.input_vars_as_dict()

@block.Constraint(self._input_labels)
def input_surrogate_ties(m, input_label):
return (
input_vars_as_dict[input_label]
== block.nn.inputs[input_idx_by_label[input_label]]
)

output_idx_by_label = {s: i for i, s in enumerate(self._output_labels)}
output_vars_as_dict = block.output_vars_as_dict()

@block.Constraint(self._output_labels)
def output_surrogate_ties(m, output_label):
return (
output_vars_as_dict[output_label]
== block.nn.outputs[output_idx_by_label[output_label]]
)
self.populate_block_with_net(block, formulation_object)

def evaluate_surrogate(self, inputs):
"""
Expand Down
187 changes: 187 additions & 0 deletions idaes/core/surrogate/omlt_base_surrogate_class.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
#################################################################################
# The Institute for the Design of Advanced Energy Systems Integrated Platform
# Framework (IDAES IP) was produced under the DOE Institute for the
# Design of Advanced Energy Systems (IDAES).
#
# Copyright (c) 2018-2023 by the software owners: The Regents of the
# University of California, through Lawrence Berkeley National Laboratory,
# National Technology & Engineering Solutions of Sandia, LLC, Carnegie Mellon
# University, West Virginia University Research Corporation, et al.
# All rights reserved. Please see the files COPYRIGHT.md and LICENSE.md
# for full copyright and license information.
#################################################################################
"""
Interface for importing ONNX models into IDAES
"""
# TODO: Missing docstrings
# pylint: disable=missing-class-docstring
# pylint: disable=missing-function-docstring

from enum import Enum
import numpy as np

from pyomo.common.dependencies import attempt_import

from idaes.core.surrogate.base.surrogate_base import SurrogateBase
from idaes.core.surrogate.sampling.scaling import OffsetScaler

keras, keras_available = attempt_import("tensorflow.keras")
omlt, omlt_available = attempt_import("omlt")

if omlt_available:
from omlt import OmltBlock, OffsetScaling


class OMLTSurrogate(SurrogateBase):
def __init__(
self,
input_labels,
output_labels,
input_bounds,
input_scaler=None,
output_scaler=None,
):
"""
Standard SurrogateObject for surrogates based on Keras models.
Utilizes the OMLT framework for importing Keras models to IDAES.

Contains methods to both populate a Pyomo Block with constraints
representing the surrogate and to evaluate the surrogate a set of user
provided points.

This constructor should only be used when first creating the surrogate within IDAES.
Once created, this object can be stored to disk using save_to_folder and loaded
with load_from_folder

Args:
onnx_model: Onnx model file to be loaded.
input_labels: list of str
The ordered list of labels corresponding to the inputs in the keras model
output_labels: list of str
The ordered list of labels corresponding to the outputs in the keras model
input_bounds: None of dict of tuples
Keys correspond to each of the input labels and values are the tuples of
bounds (lb, ub)
input_scaler: None or OffsetScaler
The scaler to be used for the inputs. If None, then no scaler is used
output_scaler: None of OffsetScaler
The scaler to be used for the outputs. If None, then no scaler is used
"""
super().__init__(
input_labels=input_labels,
output_labels=output_labels,
input_bounds=input_bounds,
)

# make sure we are using the standard scaler
if (
input_scaler is not None
and not isinstance(input_scaler, OffsetScaler)
or output_scaler is not None
and not isinstance(output_scaler, OffsetScaler)
):
raise NotImplementedError("KerasSurrogate only supports the OffsetScaler.")

# check that the input labels match
if input_scaler is not None and input_scaler.expected_columns() != input_labels:
raise ValueError(
"KerasSurrogate created with input_labels that do not match"
" the expected columns in the input_scaler.\n"
"input_labels={}\n"
"input_scaler.expected_columns()={}".format(
input_labels, input_scaler.expected_columns()
)
)

# check that the output labels match
if (
output_scaler is not None
and output_scaler.expected_columns() != output_labels
):
raise ValueError(
"KerasSurrogate created with output_labels that do not match"
" the expected columns in the output_scaler.\n"
"output_labels={}\n"
"output_scaler.expected_columns()={}".format(
output_labels, output_scaler.expected_columns()
)
)

self._input_scaler = input_scaler
self._output_scaler = output_scaler

class Formulation(Enum):
FULL_SPACE = 1
REDUCED_SPACE = 2
RELU_BIGM = 3
RELU_COMPLEMENTARITY = 4

def generate_omlt_scaling_objecets(self):
offset_inputs = np.zeros(self.n_inputs())
factor_inputs = np.ones(self.n_inputs())
offset_outputs = np.zeros(self.n_outputs())
factor_outputs = np.ones(self.n_outputs())
if self._input_scaler:
offset_inputs = self._input_scaler.offset_series()[
self.input_labels()
].to_numpy()
factor_inputs = self._input_scaler.factor_series()[
self.input_labels()
].to_numpy()
if self._output_scaler:
offset_outputs = self._output_scaler.offset_series()[
self.output_labels()
].to_numpy()
factor_outputs = self._output_scaler.factor_series()[
self.output_labels()
].to_numpy()

omlt_scaling = OffsetScaling(
offset_inputs=offset_inputs,
factor_inputs=factor_inputs,
offset_outputs=offset_outputs,
factor_outputs=factor_outputs,
)

# omlt takes *scaled* input bounds as a dictionary with int keys
input_bounds = dict(enumerate(self.input_bounds().values()))
scaled_input_bounds = omlt_scaling.get_scaled_input_expressions(input_bounds)
scaled_input_bounds = {i: tuple(bnd) for i, bnd in scaled_input_bounds.items()}
return omlt_scaling, scaled_input_bounds

def populate_block_with_net(self, block, formulation_object):
"""
Method to populate a Pyomo Block with the omlt model constraints and build its formulation.

Args:
block: Pyomo Block component
The block to be populated with variables and/or constraints.
formulation_object: omlt loaded network formulation
"""

block.nn = OmltBlock()
block.nn.build_formulation(
formulation_object,
)

# input/output variables need to be constrained to be equal
# auto-created variables that come from OMLT.
input_idx_by_label = {s: i for i, s in enumerate(self._input_labels)}
input_vars_as_dict = block.input_vars_as_dict()

@block.Constraint(self._input_labels)
def input_surrogate_ties(m, input_label):
return (
input_vars_as_dict[input_label]
== block.nn.inputs[input_idx_by_label[input_label]]
)

output_idx_by_label = {s: i for i, s in enumerate(self._output_labels)}
output_vars_as_dict = block.output_vars_as_dict()

@block.Constraint(self._output_labels)
def output_surrogate_ties(m, output_label):
return (
output_vars_as_dict[output_label]
== block.nn.outputs[output_idx_by_label[output_label]]
)
Loading
Loading