Skip to content

Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

License

MIT and 3 other licenses found

Licenses found

MIT
LICENSE
Apache-2.0
LICENSE-FID
BSD-2-Clause
LICENSE-LPIPS
Unknown
LICENSE-NVIDIA
Notifications You must be signed in to change notification settings

Im4lish/StyleRenderer

 
 

StyleGAR

TODO: add arxiv link

Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction

TODO: for test

Currently, some models are being modified with open-code resources (3dmm, landmark, segmentation), to get rid of commercial models, will update soon.

Usage

First align all faces according to landmarks:

python uitls_face.py --lmk dlib --bfm BFM.mat --output OUTPUT_PATH DATASET_PATH

This will align according to specified landmark model, you can change to other kinds of landmark detector

Create lmdb datasets:

python prepare_data.py --out LMDB_PATH --n_worker N_WORKER --size SIZE1,SIZE2,SIZE3,... OUTPUT_PATH

This will convert images to jpeg and pre-resizes it. This implementation does not use progressive growing, but you can create multiple resolution datasets using size arguments with comma separated lists, for the cases that you want to try another resolutions later.

Then you can train model in distributed settings

python -m torch.distributed.launch --nproc_per_node=N_GPU --master_port=PORT train.py --batch BATCH_SIZE LMDB_PATH

train.py supports Weights & Biases logging. If you want to use it, add --wandb arguments to the script.

Generate samples

python generate.py --sample N_FACES --pics N_PICS --ckpt PATH_CHECKPOINT

You should change your size (--size 256 for example) if you train with another dimension.

License

Model details and custom CUDA kernel codes are from official repostiories: https://github.com/NVlabs/stylegan2

Codes for Learned Perceptual Image Patch Similarity, LPIPS came from https://github.com/richzhang/PerceptualSimilarity

To match FID scores more closely to tensorflow official implementations, I have used FID Inception V3 implementations in https://github.com/mseitzer/pytorch-fid

The work is built on the implementation of stylegan2 with Pytorch (https://github.com/rosinality/stylegan2-pytorch.git)

About

Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

Resources

License

MIT and 3 other licenses found

Licenses found

MIT
LICENSE
Apache-2.0
LICENSE-FID
BSD-2-Clause
LICENSE-LPIPS
Unknown
LICENSE-NVIDIA

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 80.5%
  • Cuda 8.1%
  • C++ 8.0%
  • HTML 2.3%
  • CSS 1.1%