The implementation of "Is POS Tagging Necessary or Even Helpful for Neural Dependency Parsing?".
python == 3.7.0
pytorch == 1.0.0
TODO
TODO
You can start the training, evaluation and prediction process by using subcommands registered in parser.cmds
.
$ python run.py -h
usage: run.py [-h] {evaluate,predict,train} ...
Create the Biaffine Parser model.
optional arguments:
-h, --help show this help message and exit
Commands:
{evaluate,predict,train}
evaluate Evaluate the specified model and dataset.
predict Use a trained model to make predictions.
train Train a model.
Before triggering the subparser, please make sure that the data files must be in CoNLL-X format. If some fields are missing, you can use underscores as placeholders.
Optional arguments of the subparsers are as follows:
$ python run.py train -h
usage: run.py train [-h] [--buckets BUCKETS] [--ftrain FTRAIN] [--fdev FDEV]
[--ftest FTEST] [--fembed FEMBED] [--device DEVICE]
[--seed SEED] [--threads THREADS] [--file FILE]
[--vocab VOCAB]
optional arguments:
-h, --help show this help message and exit
--buckets BUCKETS max num of buckets to use
--ftrain FTRAIN path to train file
--fdev FDEV path to dev file
--ftest FTEST path to test file
--fembed FEMBED path to pretrained embedding file
--device DEVICE, -d DEVICE
ID of GPU to use
--seed SEED, -s SEED seed for generating random numbers
--threads THREADS, -t THREADS
max num of threads
--file FILE, -f FILE path to model file
--vocab VOCAB, -v VOCAB
path to vocabulary file
$ python run.py evaluate -h
usage: run.py evaluate [-h] [--batch-size BATCH_SIZE] [--buckets BUCKETS]
[--include-punct] [--fdata FDATA] [--device DEVICE]
[--seed SEED] [--threads THREADS] [--file FILE]
[--vocab VOCAB]
optional arguments:
-h, --help show this help message and exit
--batch-size BATCH_SIZE
batch size
--buckets BUCKETS max num of buckets to use
--include-punct whether to include punctuation
--fdata FDATA path to dataset
--device DEVICE, -d DEVICE
ID of GPU to use
--seed SEED, -s SEED seed for generating random numbers
--threads THREADS, -t THREADS
max num of threads
--file FILE, -f FILE path to model file
--vocab VOCAB, -v VOCAB
path to vocabulary file
$ python run.py predict -h
usage: run.py predict [-h] [--batch-size BATCH_SIZE] [--fdata FDATA]
[--fpred FPRED] [--device DEVICE] [--seed SEED]
[--threads THREADS] [--file FILE] [--vocab VOCAB]
optional arguments:
-h, --help show this help message and exit
--batch-size BATCH_SIZE
batch size
--fdata FDATA path to dataset
--fpred FPRED path to predicted result
--device DEVICE, -d DEVICE
ID of GPU to use
--seed SEED, -s SEED seed for generating random numbers
--threads THREADS, -t THREADS
max num of threads
--file FILE, -f FILE path to model file
--vocab VOCAB, -v VOCAB
path to vocabulary file
- Houquan Zhou, Yu Zhang, Zhenghua Li, Min Zhang Is POS Tagging Necessary or Even Helpful for Neural Dependency Parsing?
@inproceedings{zhou2020is,
author = {Houquan Zhou and
Yu Zhang and
Zhenghua Li and
Min Zhang},
editor = {Xiaodan Zhu and
Min Zhang and
Yu Hong and
Ruifang He},
title = {Is {POS} Tagging Necessary or Even Helpful for Neural Dependency Parsing?},
booktitle = {Natural Language Processing and Chinese Computing - 9th {CCF} International Conference, {NLPCC} 2020, Zhengzhou, China, October 14-18, 2020, Proceedings, Part {I}},
series = {Lecture Notes in Computer Science},
volume = {12430},
pages = {179--191},
publisher = {Springer},
year = {2020},
url = {https://doi.org/10.1007/978-3-030-60450-9\_15},
doi = {10.1007/978-3-030-60450-9\_15},
timestamp = {Thu, 08 Oct 2020 12:56:06 +0200},
biburl = {https://dblp.org/rec/conf/nlpcc/ZhouZLZ20.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}