Skip to content

Jawad1347/yolov5

 
 

Repository files navigation

 

** GPU Latency measures end-to-end latency per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP32 inference, postprocessing and NMS.

Pretrained Checkpoints

Model APval APtest AP50 LatencyGPU FPSGPU params FLOPs
YOLOv5-s (ckpt) 35.5 35.5 55.0 2.5ms 400 7.1M 12.6B
YOLOv5-m (ckpt) 42.7 42.7 62.4 4.4ms 227 22.0M 39.0B
YOLOv5-l (ckpt) 45.7 45.9 65.1 6.8ms 147 50.3M 89.0B
YOLOv5-x (ckpt) 47.2 47.3 66.6 11.7ms 85 95.9M 170.3B
YOLOv3-SPP (ckpt) 45.6 45.5 65.2 7.9ms 127 63.0M 118.0B

** APtest denotes COCO test-dev2017 server results, all other AP results in the table denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. Reproduce by python test.py --img 736 --conf 0.001
** LatencyGPU measures end-to-end latency per image averaged over 5000 COCO val2017 images using a GCP n1-standard-16 instance with one V100 GPU, and includes image preprocessing, PyTorch FP32 inference at batch size 32, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. Reproduce by python test.py --img 640 --conf 0.1
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).

Requirements

Python 3.7 or later with all requirements.txt dependencies installed, including torch >= 1.5. To install run:

$ pip install -U -r requirements.txt

This repository contains code for this tutorial.

Tutorials

Inference

Inference can be run on most common media formats. Model checkpoints are downloaded automatically if available. Results are saved to ./inference/output. To run inference on examples in the ./inference/images folder:

$ python3 detect.py --source ./inference/images/test1.jpg  --weights weights/last.pt --conf 0.5

Output

Reproduce my Environment

To access an up-to-date working environment (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled), consider a:

Citation

DOI

About

YOLOv5 in PyTorch > ONNX > CoreML > iOS

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 95.1%
  • Python 4.8%
  • Other 0.1%