Skip to content
master
Go to file
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 
 
 

README.md

Zero-Shot Image Generation by Distilling Concepts from Multiple Captions

Accepted at Towards learning with limited labels Workshop, ICML 2018, Stockholm, Sweden. (Link)

Existing methods for generating an image from its description, use one single caption to generate a plausible image. A single caption by itself, would not be able to capture the variety of concepts that might be present in the image. We propose a generative model that will iteratively improve the concepts, and thereby the quality of the generated image by making use of multiple captions about a single image. This is achieved by ensuring `cross-caption cycle consistency' between the captions and the intermediate image representations. We report quantitative and qualitative results to bring out the efficacy of the proposed approach in zero-shot image generations, where images are generated from descriptions of novel classes that are not seen during training.

Architecture

alt text

Results

alt text

Code

Build on top of:

  • Pytorch
  • Python 2.7

Main File

  • main.py

References

About

(ICML-W, 2018) Text to image synthesis, by distilling concepts from multiple captions.

Topics

Resources

License

Releases

No releases published

Packages

No packages published

Languages

You can’t perform that action at this time.