Analyze WHO Air Quality data with EDA, PCA, Regression, and Classification. Predict PM2.5 levels and classify regions into High vs Low pollution risk.
- EDA: PM2.5 distribution, correlation heatmap
- PCA: Dimensionality reduction & visualization
- Regression: Linear Regression for PM2.5 prediction
- Classification: Logistic Regression (High vs Low PM2.5)
- Metrics & Plots: R², RMSE, MAE, Confusion Matrix, ROC Curve
git clone https://github.com/your-username/air-quality-analysis.git
cd air-quality-analysis
pip install -r requirements.txt
python analysis.py
Outputs (plots + metrics) will be saved in the outputs/
folder and displayed in console.
eda_distribution_pm25.png
eda_correlation.png
pca_scatter.png
regression_true_vs_pred.png
classification_confusion_matrix.png
classification_roc_curve.png