Skip to content

Clean repository of my Bachelor's Thesis about Developing a Developing a One-Year Risk Score for Transcatheter Aortic Valve Implantation

Notifications You must be signed in to change notification settings

JudithBernett/TaviScore

Repository files navigation

TaviScore

Clean repository of my Bachelor's Thesis about Developing a Developing a One-Year Risk Score for Transcatheter Aortic Valve Implantation

Main stuff is in 02_models

00 Data preparation

  1. Execute create_time2event.R
  2. For follow-up distribution plots, execute FUP_plots.R

  1. Basic parameter plots are in parameter_plots_basic.R

  1. Parameter plots stratified by risk (STS scores <=4, >8) are in´parameter_plots_riskstratified.R

01 Statistical analysis

Execute statistical_analyses.R. T-test results:

name p.value p.adjustBH significantBH p.adjustbonferroni significantbonferroni
age 0.0125234257768774 0.0268359124 1 0.188 1
height 0.482935928103082 0.4829359281 0 1 0
weight 0.227478736745308 0.2938234259 0 1 0
bmi 0.0671981859432215 0.1119969766 0 1 0
bsa 0.31569220140739 0.3382416444 0 1 0
scoreii_log 0.000396318907582548 0.0019815945 1 0.006 1
calc_sts 2.1602992412237e-05 0.0001620224 1 0 1
creatinine 0.00190886280521956 0.0071582355 1 0.029 1
gfr 0.0274026651295069 0.0513799971 0 0.411 0
hb 1.22251732928169e-06 1.83378e-05 1 0 1
thrombo 0.300436060446901 0.3382416444 0 1 0
ck 0.0854377356608728 0.1281566035 0 1 0
hrate 0.235058740756237 0.2938234259 0 1 0
gradient_mean 0.00278155195625097 0.0083446559 1 0.042 1
lvef 0.00762988047802821 0.0190747012 1 0.114 1

Some Fisher's exact test results:

name p.value p.adjustBH significantBH p.adjustbonferroni significantbonferroni
sex 0.0183086768861968 0.0651196902 0 1 0
diab 0.0330957099873782 0.1049932869 0 1 0
hyper 0.509051870376169 0.6787358272 0 1 0
dyslip 0.573318859356573 0.724717356 0 1 0
copd 0.00105187120823079 0.0120965189 1 0.097 0
cerebro 1 1 0 1 0
cerebro_strokebl 0.860437851780319 0.909888303 0 1 0
pacemaker 0.21658203256523 0.3985109399 0 1 0
valvulo 0.694732127232969 0.7890784655 0 1 0
cad 0.398692710469582 0.6113288227 0 1 0
pci 0.377984155566603 0.6102106167 0 1 0
mi 0.0102112330033713 0.0391430598 1 0.939 0
ad 2.45400259120383e-06 0.0001128841 1 0 1
csurgery 0.431826404033876 0.6306036376 0 1 0

02 Models

Model plots: Problem: STS and EuroSCORE II cannot distinguish between intermediate and low risk patients

We decided on Lasso_smaller.R for all patients, and Lasso_intermed_low.R for patients with STS scores <= 8.

Small model: n= 1434, number of events= 124

coef exp(coef) se(coef) z Pr(>|z|
sex 0.613995 1.847799 0.192114 3.196 0.001394 **
age 0.044255 1.045249 0.013778 3.212 0.001318 **
ad 0.735021 2.085526 0.204445 3.595 0.000324 ***
copd 0.635212 1.887422 0.224876 2.825 0.004732 **
medi_diuretic 0.473712 1.605944 0.219912 2.154 0.031233 *
hb -0.018002 0.982159 0.004919 -3.660 0.000252 ***
regurg_mitral34 0.606873 1.834686 0.190928 3.179 0.001480 **
Measure Value
Concordance 0.732 (se = 0.023 )
Likelihood ratio test 79.04 on 7 df, p=2e-14
Wald test 79.31 on 7 df, p=2e-14
Score (logrank) test 84.79 on 7 df, p=1e-15
10 fold CV 0.7185
Mean permutation test 0.5861

Intermediate/low model: n= 1268, number of events= 93

coef exp(coef) se(coef) z Pr(>|z|
sex 0.699172 2.012087 0.231422 3.021 0.002518 **
copd 0.490690 1.633443 0.272610 1.800 0.071866 .
ad 0.485754 1.625400 0.250047 1.943 0.052059 .
medi_diuretic 0.491276 1.634400 0.243235 2.020 0.043409 *
hb -0.018414 0.981754 0.005561 -3.312 0.000928 ***
ccs_stratified -0.536056 0.585051 0.265223 -2.021 0.043264 *
regurg_tricuspid34 0.724856 2.064434 0.298633 2.427 0.015214 *
regurg_mitral34 0.211762 1.235854 0.250415 0.846 0.397752
Measure Value
Concordance 0.713 (se = 0.028 )
Likelihood ratio test 50.1 on 8 df, p=4e-08
Wald test 52.68 on 8 df, p=1e-08
Score (logrank) test 55.91 on 8 df, p=3e-09
10 fold CV 0.688
Mean permutation test 0.5747

Use model to predict "new" data from high risk patients

Just predicting it does not work so well

Confusion Matrix and Statistics

Reference=0 Reference=1
Prediction=0 133 30
Prediction=1 2 1

Patients with high STS scores also have higher linear predictors but the range of STS scores within each hazard category is high. The new data gets sorted into the high and intermediate hazard categories.

N Observed Expected (O-E)^2/E (O-E)^2/V
hazard=high 103 26 19.41 2.23 6.04
hazard=intermediate 62 4 11.41 4.81 7.69
hazard=low 1 1 0.18 3.74 3.78

03 Test set: cohort from other geographical location

The analysis is in the R notebook

About

Clean repository of my Bachelor's Thesis about Developing a Developing a One-Year Risk Score for Transcatheter Aortic Valve Implantation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published