Clean repository of my Bachelor's Thesis about Developing a Developing a One-Year Risk Score for Transcatheter Aortic Valve Implantation
Main stuff is in 02_models
- Execute
create_time2event.R
- For follow-up distribution plots, execute
FUP_plots.R
- Basic parameter plots are in
parameter_plots_basic.R
Execute statistical_analyses.R
. T-test results:
name | p.value | p.adjustBH | significantBH | p.adjustbonferroni | significantbonferroni |
---|---|---|---|---|---|
age | 0.0125234257768774 | 0.0268359124 | 1 | 0.188 | 1 |
height | 0.482935928103082 | 0.4829359281 | 0 | 1 | 0 |
weight | 0.227478736745308 | 0.2938234259 | 0 | 1 | 0 |
bmi | 0.0671981859432215 | 0.1119969766 | 0 | 1 | 0 |
bsa | 0.31569220140739 | 0.3382416444 | 0 | 1 | 0 |
scoreii_log | 0.000396318907582548 | 0.0019815945 | 1 | 0.006 | 1 |
calc_sts | 2.1602992412237e-05 | 0.0001620224 | 1 | 0 | 1 |
creatinine | 0.00190886280521956 | 0.0071582355 | 1 | 0.029 | 1 |
gfr | 0.0274026651295069 | 0.0513799971 | 0 | 0.411 | 0 |
hb | 1.22251732928169e-06 | 1.83378e-05 | 1 | 0 | 1 |
thrombo | 0.300436060446901 | 0.3382416444 | 0 | 1 | 0 |
ck | 0.0854377356608728 | 0.1281566035 | 0 | 1 | 0 |
hrate | 0.235058740756237 | 0.2938234259 | 0 | 1 | 0 |
gradient_mean | 0.00278155195625097 | 0.0083446559 | 1 | 0.042 | 1 |
lvef | 0.00762988047802821 | 0.0190747012 | 1 | 0.114 | 1 |
Some Fisher's exact test results:
name | p.value | p.adjustBH | significantBH | p.adjustbonferroni | significantbonferroni |
---|---|---|---|---|---|
sex | 0.0183086768861968 | 0.0651196902 | 0 | 1 | 0 |
diab | 0.0330957099873782 | 0.1049932869 | 0 | 1 | 0 |
hyper | 0.509051870376169 | 0.6787358272 | 0 | 1 | 0 |
dyslip | 0.573318859356573 | 0.724717356 | 0 | 1 | 0 |
copd | 0.00105187120823079 | 0.0120965189 | 1 | 0.097 | 0 |
cerebro | 1 | 1 | 0 | 1 | 0 |
cerebro_strokebl | 0.860437851780319 | 0.909888303 | 0 | 1 | 0 |
pacemaker | 0.21658203256523 | 0.3985109399 | 0 | 1 | 0 |
valvulo | 0.694732127232969 | 0.7890784655 | 0 | 1 | 0 |
cad | 0.398692710469582 | 0.6113288227 | 0 | 1 | 0 |
pci | 0.377984155566603 | 0.6102106167 | 0 | 1 | 0 |
mi | 0.0102112330033713 | 0.0391430598 | 1 | 0.939 | 0 |
ad | 2.45400259120383e-06 | 0.0001128841 | 1 | 0 | 1 |
csurgery | 0.431826404033876 | 0.6306036376 | 0 | 1 | 0 |
Model plots: Problem: STS and EuroSCORE II cannot distinguish between intermediate and low risk patients
We decided on Lasso_smaller.R
for all patients, and Lasso_intermed_low.R
for patients with STS scores <= 8.
coef | exp(coef) | se(coef) | z | Pr(>|z| | ||
---|---|---|---|---|---|---|
sex | 0.613995 | 1.847799 | 0.192114 | 3.196 | 0.001394 | ** |
age | 0.044255 | 1.045249 | 0.013778 | 3.212 | 0.001318 | ** |
ad | 0.735021 | 2.085526 | 0.204445 | 3.595 | 0.000324 | *** |
copd | 0.635212 | 1.887422 | 0.224876 | 2.825 | 0.004732 | ** |
medi_diuretic | 0.473712 | 1.605944 | 0.219912 | 2.154 | 0.031233 | * |
hb | -0.018002 | 0.982159 | 0.004919 | -3.660 | 0.000252 | *** |
regurg_mitral34 | 0.606873 | 1.834686 | 0.190928 | 3.179 | 0.001480 | ** |
Measure | Value |
---|---|
Concordance | 0.732 (se = 0.023 ) |
Likelihood ratio test | 79.04 on 7 df, p=2e-14 |
Wald test | 79.31 on 7 df, p=2e-14 |
Score (logrank) test | 84.79 on 7 df, p=1e-15 |
10 fold CV | 0.7185 |
Mean permutation test | 0.5861 |
coef | exp(coef) | se(coef) | z | Pr(>|z| | ||
---|---|---|---|---|---|---|
sex | 0.699172 | 2.012087 | 0.231422 | 3.021 | 0.002518 | ** |
copd | 0.490690 | 1.633443 | 0.272610 | 1.800 | 0.071866 | . |
ad | 0.485754 | 1.625400 | 0.250047 | 1.943 | 0.052059 | . |
medi_diuretic | 0.491276 | 1.634400 | 0.243235 | 2.020 | 0.043409 | * |
hb | -0.018414 | 0.981754 | 0.005561 | -3.312 | 0.000928 | *** |
ccs_stratified | -0.536056 | 0.585051 | 0.265223 | -2.021 | 0.043264 | * |
regurg_tricuspid34 | 0.724856 | 2.064434 | 0.298633 | 2.427 | 0.015214 | * |
regurg_mitral34 | 0.211762 | 1.235854 | 0.250415 | 0.846 | 0.397752 |
Measure | Value |
---|---|
Concordance | 0.713 (se = 0.028 ) |
Likelihood ratio test | 50.1 on 8 df, p=4e-08 |
Wald test | 52.68 on 8 df, p=1e-08 |
Score (logrank) test | 55.91 on 8 df, p=3e-09 |
10 fold CV | 0.688 |
Mean permutation test | 0.5747 |
Just predicting it does not work so well
Confusion Matrix and Statistics
Reference=0 | Reference=1 | |
---|---|---|
Prediction=0 | 133 | 30 |
Prediction=1 | 2 | 1 |
Patients with high STS scores also have higher linear predictors but the range of STS scores within each hazard category is high. The new data gets sorted into the high and intermediate hazard categories.
N | Observed | Expected | (O-E)^2/E | (O-E)^2/V | |
---|---|---|---|---|---|
hazard=high | 103 | 26 | 19.41 | 2.23 | 6.04 |
hazard=intermediate | 62 | 4 | 11.41 | 4.81 | 7.69 |
hazard=low | 1 | 1 | 0.18 | 3.74 | 3.78 |
The analysis is in the R notebook