Concrete Example:
- Example Scenario: The heights of adults in a population typically follow a normal distribution, with most people having heights around the mean and fewer people being much shorter or taller than average.
Python Function: scipy.stats.norm
-
norm.cdf()
- Definition: The cumulative distribution function (CDF) calculates the probability that a random variable from a normal distribution is less than or equal to a certain value.
- Example:
from scipy.stats import norm # Probability that a value is less than or equal to 1.96 in a standard normal distribution prob = norm.cdf(1.96) print(prob) # Output: 0.9750021048517795
-
norm.pdf()
- Definition: The probability density function (PDF) calculates the probability density of a normal distribution at a given value.
- Example:
from scipy.stats import norm # Probability density at value 0 in a standard normal distribution density = norm.pdf(0) print(density) # Output: 0.3989422804014327
-
norm.rvs()
- Definition: The random variate sampling (RVS) function generates random numbers from a normal distribution.
- Example:
from scipy.stats import norm # Generate 5 random values from a standard normal distribution random_values = norm.rvs(size=5) print(random_values)
Concrete Example:
- Example Scenario: The number of emails a person receives per hour can be modeled using a Poisson distribution if the emails are received independently and at a constant average rate.
Python Function: scipy.stats.poisson
-
poisson.cdf()
- Definition: The cumulative distribution function (CDF) calculates the probability that the number of events is less than or equal to a certain value.
- Example:
from scipy.stats import poisson # Probability of receiving 3 or fewer emails in an hour, given the average rate is 2 emails per hour prob = poisson.cdf(3, 2) print(prob) # Output: 0.857123460498547
-
poisson.pmf()
- Definition: The probability mass function (PMF) calculates the probability of a given number of events occurring in a fixed interval.
- Example:
from scipy.stats import poisson # Probability of receiving exactly 2 emails in an hour, given the average rate is 2 emails per hour prob = poisson.pmf(2, 2) print(prob) # Output: 0.2706705664732254
-
poisson.rvs()
- Definition: The random variate sampling (RVS) function generates random numbers from a Poisson distribution.
- Example:
from scipy.stats import poisson # Generate 5 random values from a Poisson distribution with an average rate of 2 emails per hour random_values = poisson.rvs(2, size=5) print(random_values)
Concrete Example:
- Example Scenario: The time between arrivals of buses at a bus stop can be modeled using an exponential distribution if the buses arrive independently and at a constant average rate.
Python Function: scipy.stats.expon
-
expon.cdf()
- Definition: The cumulative distribution function (CDF) calculates the probability that the time between events is less than or equal to a certain value.
- Example:
from scipy.stats import expon # Probability that the waiting time is less than or equal to 5 minutes, given the average rate is 1 bus per 10 minutes prob = expon.cdf(5, scale=10) print(prob) # Output: 0.3934693402873666
-
expon.pdf()
- Definition: The probability density function (PDF) calculates the probability density of the time between events at a given value.
- Example:
from scipy.stats import expon # Probability density at 5 minutes, given the average rate is 1 bus per 10 minutes density = expon.pdf(5, scale=10) print(density) # Output: 0.09048374180359596
-
expon.rvs()
- Definition: The random variate sampling (RVS) function generates random numbers from an exponential distribution.
- Example:
from scipy.stats import expon # Generate 5 random waiting times from an exponential distribution with an average rate of 1 bus per 10 minutes random_values = expon.rvs(scale=10, size=5) print(random_values)
These summaries provide concrete examples and Python applications of the normal, Poisson, and exponential distributions using the scipy.stats
library.