Skip to content

KU-LIM-Lab/Levy_Ito_Model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Levy_Ito_Model

Environment Setting

First, navigate into the directory.

cd Levy_Ito_Model

Next, install the necessary packages.

pip install -r requirements.txt

Training Command

To train the model, use the following command:

CUDA_VISIBLE_DEVICES=0,1 LOCAK_RANK=0,1 torchrun --master_port 12355 --nproc_per_node 2 main.py --exp t_cifar10_2.0  --seed 0 --config cifar10_ddpm.yaml --ddp 

Parameters:

  • --exp [folder_name]: Name of the folder to save the experiment results.
  • --seed [integer]: Seed for reproducibility.
  • --config [configuration_file]: Configuration file to reference. Example files (cifar10_ddpm.yaml and cifar10_ncnsnpp.yaml) are located in the config directory.
  • --ddp: Run the code in a GPU environment.
  • --resume: Resume training from a saved checkpoint in the specified folder.

Sampling Command

To sample from the trained model, use the following command:

CUDA_VISIBLE_DEVICES=0,1 LOCAK_RANK=0,1 torchrun --master_port 12355 --nproc_per_node 2 main.py --exp t_cifar10_2.0  --seed 0 --config cifar10_ddpm.yaml --ddp --resume --sampling 

Parameters:

  • --exp [folder_name]: Name of the folder containing the trained model.
  • --seed [integer]: Seed for reproducibility.
  • --config [configuration_file]: Configuration file to reference. Example files (cifar10_ddpm.yaml and cifar10_ncnsnpp.yaml) are located in the config directory.
  • --ddp: Run the code in a GPU environment.
  • --resume: Load the saved checkpoint from the specified folder for sampling.
  • --sample: Enable sampling mode.
  • --fid: Calculate the Frechet Inception Distance (FID).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages