Code for "Machine learning uncovers degradation pathways of perovskite light-emitting diode with multispectral imaging"
https://www.nature.com/articles/s42256-023-00736-z
- Version 1.0 (For Python 3.6, Cuda 10.0, and TensorFlow 1.14.0) https://doi.org/10.5281/zenodo.8281088
- Version 2.0 (For Python 3.6, Cuda 11.x, and TensorFlow 2.6.2) https://doi.org/10.5281/zenodo.8417653
- python 3.6.8
- h5py 3.1.0
- scipy 1.5.4
- joblib 0.14.1
- matplotlib 3.1.2
- tensorflow_gpu 2.6.2 (support Cuda 11.2/11.4)
- 32GB RAM PC Memory
- (Optional) 16GB GPU Memory
- Linux, CentOS 7
- Windows 11, 22H2
https://docs.anaconda.com/anaconda/install/
conda create -n (anyname) python=3.6.8
conda activate (anyname)
conda install ipykernel
pip install h5py==3.1.0
pip install matplotlib==3.1.2
pip install scipy==1.5.4
pip install joblib==0.14.1
To install the CPU version of tensorflow:
pip install tensorflow==2.6.2
OR To install the GPU version (which require a working GPU with CUDA 11.2 or 11.4 with a corresponding cuDNN driver):
pip install tensorflow_gpu==2.6.2
Launch Jupyter Notebook and locate this repository. https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html
Run PANet_blind.ipynb, follow the instruction to reproduce the reported result. The attached Demo.pdf is a complete run of the demo with full logs.
[Creative Commons Attribution-NonCommercial (CC BY-NC 4.0)] https://creativecommons.org/licenses/by-nc/4.0/