Modern, async-first Python SDK for managing real-time data infrastructure with DeltaStream.
The DeltaStream Python SDK provides an ergonomic, type-safe, asynchronous interface to DeltaStream's control and data planes. It simplifies creation, management, and orchestration of streaming data resources (streams, stores, compute pools, schemas, functions, entities, etc.) while offering direct SQL execution for advanced workflows.
Built on top of the official DeltaStream Connector, this SDK focuses on developer productivity, clarity, and composability.
- Async/await native API (Python 3.11+)
- Full CRUD lifecycle for all DeltaStream resources
- Multiple auth/connection strategies: DSN, environment, or programmatic
- Context switching (database, schema, store) with in-memory state tracking
- Direct SQL execution and query helpers
- Rich resource managers (Streams, Stores, Entities, Functions, Compute Pools, Schemas, Registries, Changelogs, Descriptors)
- Type hints throughout for excellent IDE support
- Extensible patterns for adding new resource types
Domain | Examples |
---|---|
Streams | Creation, status, start/stop, select-based materialization |
Stores | Kafka, Kinesis, S3 and more |
Databases & Schemas | Lifecycle + context switching |
Entities | Creation, insertion, hierarchical listing |
Functions & Sources | Function code + metadata management |
Descriptor Sources | Protocol buffer / descriptor handling |
Schema Registries | Registry management and integration |
Compute Pools | Provisioning, scaling, lifecycle |
Changelogs | Tracking and management |
Install from PyPI (recommended):
pip install deltastream-sdk
Using uv
(lockfile-driven Python package manager):
uv add deltastream-sdk
- Python 3.11+
- Network access to a DeltaStream deployment
- A valid API token or DSN credentials
Minimal working example demonstrating environment-based configuration:
import asyncio
from deltastream_sdk import DeltaStreamClient
async def main():
client = DeltaStreamClient.from_environment()
if await client.test_connection():
print("✅ Connected to DeltaStream")
if __name__ == "__main__":
asyncio.run(main())
export DELTASTREAM_DSN="deltastream://user:pass@host:port/" # Option A
# OR explicit config (Option B)
export DELTASTREAM_SERVER_URL="https://api.deltastream.io/v2"
export DELTASTREAM_TOKEN="your_token_here"
export DELTASTREAM_ORGANIZATION_ID="your_org_id"
export DELTASTREAM_DATABASE_NAME="default_db" # optional
export DELTASTREAM_SCHEMA_NAME="public" # optional
export DELTASTREAM_STORE_NAME="default_store" # optional
Below are common usage patterns. All APIs are async.
import os
from deltastream_sdk import DeltaStreamClient
# 1. From environment
client = DeltaStreamClient.from_environment()
# 2. Programmatic configuration
async def token_provider():
return os.getenv("DELTASTREAM_TOKEN")
client = DeltaStreamClient(
server_url="https://api.deltastream.io/v2",
token_provider=token_provider,
organization_id="my_org",
)
# 3. DSN-based
client = DeltaStreamClient(dsn="deltastream://user:pass@host:port/")
async def stream_example(client):
streams = await client.streams.list()
stream = await client.streams.create_with_schema(
name="user_events",
columns=[
{"name": "user_id", "type": "INTEGER"},
{"name": "event_type", "type": "VARCHAR"},
{"name": "timestamp", "type": "TIMESTAMP"},
],
store="kafka_store",
topic="user-events",
)
analytics_stream = await client.streams.create_from_select(
name="user_analytics",
query="SELECT user_id, COUNT(*) AS event_count FROM user_events GROUP BY user_id",
)
await client.streams.start("user_events")
status = await client.streams.get_status("user_events")
await client.streams.stop("user_events")
async def store_example(client):
kafka_store = await client.stores.create_kafka_store(
name="my_kafka",
bootstrap_servers="localhost:9092",
auth_type="PLAIN",
username="user",
password="pass",
schema_registry_url="http://localhost:8081",
)
topics = await client.stores.get_topics("my_kafka")
all_stores = await client.stores.list()
async def context_example(client):
await client.databases.create(name="analytics_db", comment="Analytics database")
await client.schemas.create(name="customer_data", comment="Customer data schema")
await client.use_database("analytics_db")
await client.use_schema("customer_data")
await client.use_store("my_kafka")
current_db = await client.get_current_database()
current_schema = await client.get_current_schema()
current_store = await client.get_current_store()
print(f"Context: {current_db}.{current_schema}/{current_store}")
async def entity_example(client):
await client.entities.create(
name="user_profiles",
store="my_kafka",
params={"topic.partitions": 3},
)
await client.entities.insert_values(
name="user_profiles",
values=[
{"user_id": 1, "name": "Alice", "email": "alice@example.com"},
{"user_id": 2, "name": "Bob", "email": "bob@example.com"},
],
store="my_kafka",
)
entities = await client.entities.list_entities(store="my_kafka")
async def compute_pool_example(client):
await client.compute_pools.create(name="analytics_pool", min_units=1, max_units=10)
await client.compute_pools.start("analytics_pool")
await client.compute_pools.stop("analytics_pool")
pools = await client.compute_pools.list()
async def sql_example(client):
await client.execute_sql("CREATE TEMP VIEW users AS SELECT * FROM user_stream;")
rows = await client.query_sql("SELECT COUNT(*) AS user_count FROM users;")
print(rows[0]["user_count"]) # Access by column name
from deltastream_sdk.exceptions import (
DeltaStreamSDKError,
ResourceNotFound,
SQLError,
ConnectionError,
)
async def robust_example(client):
try:
await client.streams.get("non_existent_stream")
except ResourceNotFound:
print("Stream not found")
except SQLError as e:
print("SQL failure", e)
except ConnectionError:
print("Connection issue")
except DeltaStreamSDKError as e:
print("General SDK error", e)
- Fork the repo & create a feature branch
- Add/adjust tests for your change
- Ensure lint & type checks pass
- Open a PR with a clear description & rationale
See CONTRIBUTING.md for more details.
Licensed under the Apache License 2.0. See the LICENSE file for details.