Skip to content

Kopakov/python-tensorflow-pytorch-angular

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

1 Commit
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

AI-Powered E-Commerce Platform

A comprehensive e-commerce solution showcasing advanced AI/ML capabilities, modern web development, and cloud technologies.

πŸš€ Features

Frontend (Angular + TypeScript)

  • Modern, responsive UI with Angular 17+
  • Advanced product catalog with AI-powered recommendations
  • Real-time search with NLP capabilities
  • Computer vision integration for visual search
  • Progressive Web App (PWA) features
  • State management with NgRx
  • Comprehensive testing suite

Backend (Node.js + Express)

  • RESTful API with TypeScript
  • JWT authentication and authorization
  • Real-time notifications with WebSockets
  • Payment processing integration
  • Order management system
  • Admin dashboard APIs
  • Comprehensive API documentation

AI/ML Services (Python)

  • Recommendation Engine: Collaborative filtering and content-based recommendations
  • NLP Processing: Sentiment analysis, product categorization, search optimization
  • Computer Vision: Image recognition, visual search, product similarity
  • Vector Database: Feature store for ML embeddings
  • Predictive Analytics: Demand forecasting, price optimization

Database Architecture

  • SQL Server: User data, orders, products, transactions
  • MongoDB: Product catalogs, reviews, AI features
  • Vector Database: ML embeddings and feature store
  • Redis: Caching and session management

Cloud Infrastructure (AWS)

  • EC2 instances for scalable deployment
  • RDS for SQL Server database
  • S3 for file storage and CDN
  • Lambda functions for serverless ML processing
  • CloudFront for global content delivery
  • Elastic Beanstalk for application deployment

πŸ› οΈ Technology Stack

Frontend

  • Angular 17+
  • TypeScript 5+
  • RxJS for reactive programming
  • Angular Material for UI components
  • NgRx for state management
  • PWA capabilities

Backend

  • Node.js 18+
  • Express.js with TypeScript
  • JWT for authentication
  • Socket.io for real-time features
  • Stripe for payment processing
  • AWS SDK integration

AI/ML

  • Python 3.9+
  • TensorFlow 2.x for deep learning
  • PyTorch for advanced ML models
  • scikit-learn for traditional ML
  • spaCy for NLP processing
  • OpenCV for computer vision
  • Pinecone for vector database

Databases

  • Microsoft SQL Server
  • MongoDB
  • Redis
  • Vector Database (Pinecone)

Cloud & DevOps

  • AWS (EC2, RDS, S3, Lambda, CloudFront)
  • Docker containerization
  • GitHub Actions for CI/CD
  • Azure DevOps integration

πŸ“ Project Structure

ecommerce-ai-platform/
β”œβ”€β”€ client/                 # Angular frontend
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ app/
β”‚   β”‚   β”‚   β”œβ”€β”€ components/
β”‚   β”‚   β”‚   β”œβ”€β”€ services/
β”‚   β”‚   β”‚   β”œβ”€β”€ store/
β”‚   β”‚   β”‚   └── models/
β”‚   β”‚   └── assets/
β”‚   └── package.json
β”œβ”€β”€ server/                 # Node.js backend
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ controllers/
β”‚   β”‚   β”œβ”€β”€ models/
β”‚   β”‚   β”œβ”€β”€ routes/
β”‚   β”‚   β”œβ”€β”€ middleware/
β”‚   β”‚   └── services/
β”‚   └── package.json
β”œβ”€β”€ ml-service/            # Python ML services
β”‚   β”œβ”€β”€ models/
β”‚   β”œβ”€β”€ services/
β”‚   β”œβ”€β”€ utils/
β”‚   └── requirements.txt
β”œβ”€β”€ database/              # Database schemas and migrations
β”œβ”€β”€ aws/                   # Cloud infrastructure
β”œβ”€β”€ docs/                  # Documentation
└── docker-compose.yml

πŸš€ Quick Start

Prerequisites

  • Node.js 18+
  • Python 3.9+
  • SQL Server
  • MongoDB
  • Redis
  • AWS Account

Installation

  1. Clone and install dependencies:
git clone <repository-url>
cd ecommerce-ai-platform
npm run install-all
  1. Set up environment variables:
cp .env.example .env
# Edit .env with your configuration
  1. Start all services:
npm run dev

This will start:

πŸ”§ Development

Frontend Development

cd client
npm start

Backend Development

cd server
npm run dev

ML Service Development

cd ml-service
python app.py

πŸ§ͺ Testing

# Run all tests
npm test

# Run specific test suites
cd client && npm test
cd server && npm test

πŸ“Š AI/ML Features

Recommendation System

  • Collaborative filtering based on user behavior
  • Content-based recommendations using product features
  • Hybrid approach combining both methods
  • Real-time recommendation updates

Natural Language Processing

  • Product search with semantic understanding
  • Sentiment analysis of customer reviews
  • Automated product categorization
  • Chatbot for customer support

Computer Vision

  • Visual product search
  • Similar product recommendations
  • Quality assessment of product images
  • Automated product tagging

Predictive Analytics

  • Demand forecasting for inventory management
  • Price optimization based on market trends
  • Customer lifetime value prediction
  • Churn prediction and prevention

🌐 Deployment

AWS Deployment

# Deploy to AWS using CloudFormation
cd aws
aws cloudformation create-stack --stack-name ecommerce-ai --template-body file://template.yaml

Docker Deployment

docker-compose up -d

πŸ“ˆ Performance & Monitoring

  • Real-time performance monitoring
  • AI model performance tracking
  • Database query optimization
  • CDN integration for global performance
  • Automated scaling based on demand

πŸ”’ Security

  • JWT-based authentication
  • Role-based access control
  • Data encryption at rest and in transit
  • PCI DSS compliance for payment processing
  • Regular security audits and updates

πŸ“š API Documentation

  • Swagger/OpenAPI documentation
  • Interactive API explorer
  • Postman collection for testing
  • Comprehensive error handling

🀝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new features
  5. Submit a pull request

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

🎯 Key Achievements

This project demonstrates:

  • 3+ years Angular/TypeScript experience with modern architecture
  • 3+ years AWS expertise with scalable cloud solutions
  • 2+ years AI/ML focus with production-ready ML services
  • 2+ years Python/TensorFlow/PyTorch with advanced ML implementations
  • Leadership in AI projects with mentoring and innovation
  • Strong communication skills through comprehensive documentation
  • Database expertise with SQL Server and NoSQL solutions
  • Independent development with full-stack capabilities

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published