Skip to content
This repository was archived by the owner on Aug 28, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@
#
# 2. Alter the schedule as desired.
#
# ![side_by_side_yaml](side_by_side_yaml.png){height="327px" width="800px"}
# ![side-by-side-yaml](side_by_side_yaml.png){height="327px" width="800px"}
#
# 3. Once the finetuning schedule has been altered as desired, pass it to
# [FinetuningScheduler](https://finetuning-scheduler.readthedocs.io/en/stable/api/finetuning_scheduler.fts.html#finetuning_scheduler.fts.FinetuningScheduler) to commence scheduled training:
Expand All @@ -105,7 +105,7 @@
#
# **Tip:** Use of regex expressions can be convenient for specifying more complex schedules. Also, a per-phase base maximum lr can be specified:
#
# ![emphasized_yaml](emphasized_yaml.png){height="380px" width="800px"}
# ![emphasized-yaml](emphasized_yaml.png){height="380px" width="800px"}
#
# </div>
#
Expand Down Expand Up @@ -645,8 +645,8 @@ def train() -> None:
# produced in the scenarios [here](https://drive.google.com/file/d/1t7myBgcqcZ9ax_IT9QVk-vFH_l_o5UXB/view?usp=sharing)
# (caution, ~3.5GB).
#
# [![fts_explicit_accuracy](fts_explicit_accuracy.png){height="315px" width="492px"}](https://tensorboard.dev/experiment/n7U8XhrzRbmvVzC4SQSpWw/#scalars&_smoothingWeight=0&runSelectionState=eyJmdHNfZXhwbGljaXQiOnRydWUsIm5vZnRzX2Jhc2VsaW5lIjpmYWxzZSwiZnRzX2ltcGxpY2l0IjpmYWxzZX0%3D)
# [![nofts_baseline](nofts_baseline_accuracy.png){height="316px" width="505px"}](https://tensorboard.dev/experiment/n7U8XhrzRbmvVzC4SQSpWw/#scalars&_smoothingWeight=0&runSelectionState=eyJmdHNfZXhwbGljaXQiOmZhbHNlLCJub2Z0c19iYXNlbGluZSI6dHJ1ZSwiZnRzX2ltcGxpY2l0IjpmYWxzZX0%3D)
# [![fts-explicit-accuracy](fts_explicit_accuracy.png){height="315px" width="492px"}](https://tensorboard.dev/experiment/n7U8XhrzRbmvVzC4SQSpWw/#scalars&_smoothingWeight=0&runSelectionState=eyJmdHNfZXhwbGljaXQiOnRydWUsIm5vZnRzX2Jhc2VsaW5lIjpmYWxzZSwiZnRzX2ltcGxpY2l0IjpmYWxzZX0%3D)
# [![nofts-baseline](nofts_baseline_accuracy.png){height="316px" width="505px"}](https://tensorboard.dev/experiment/n7U8XhrzRbmvVzC4SQSpWw/#scalars&_smoothingWeight=0&runSelectionState=eyJmdHNfZXhwbGljaXQiOmZhbHNlLCJub2Z0c19iYXNlbGluZSI6dHJ1ZSwiZnRzX2ltcGxpY2l0IjpmYWxzZX0%3D)
#
# Note there could be around ~1% variation in performance from the tensorboard summaries generated by this notebook
# which uses DP and 1 GPU.
Expand All @@ -656,7 +656,7 @@ def train() -> None:
# greater finetuning flexibility for model exploration in research. For example, glancing at DeBERTa-v3's implicit training
# run, a critical tuning transition point is immediately apparent:
#
# [![implicit_training_transition](implicit_training_transition.png){height="272px" width="494px"}](https://tensorboard.dev/experiment/n7U8XhrzRbmvVzC4SQSpWw/#scalars&_smoothingWeight=0&runSelectionState=eyJmdHNfZXhwbGljaXQiOmZhbHNlLCJub2Z0c19iYXNlbGluZSI6ZmFsc2UsImZ0c19pbXBsaWNpdCI6dHJ1ZX0%3D)
# [![implicit-training-transition](implicit_training_transition.png){height="272px" width="494px"}](https://tensorboard.dev/experiment/n7U8XhrzRbmvVzC4SQSpWw/#scalars&_smoothingWeight=0&runSelectionState=eyJmdHNfZXhwbGljaXQiOmZhbHNlLCJub2Z0c19iYXNlbGluZSI6ZmFsc2UsImZ0c19pbXBsaWNpdCI6dHJ1ZX0%3D)
#
# Our `val_loss` begins a precipitous decline at step 3119 which corresponds to phase 17 in the schedule. Referring to our
# schedule, in phase 17 we're beginning tuning the attention parameters of our 10th encoder layer (of 11). Interesting!
Expand Down