Skip to content

Machine learning system for detecting bot accounts using temporal patterns, tweet embeddings, and user metadata. Achieves the state-of-the-art 70% F1 score.

Notifications You must be signed in to change notification settings

Luke-MT/Twitter-bot-detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Twitter-bot-detection

Machine learning system for detecting bot accounts using temporal patterns, tweet embeddings, and user metadata.

Models

ML Models: XGBoost with Optuna optimization, Multi-input Neural Network

NLP: RoBERTa-based sentence transformers for tweet embeddings, BERT-base sentence transformers for profile descriptions embeddings

Features: 47 temporal/behavioral features + 384D description embeddings + 768D tweet embeddings

Features

Temporal Analysis: Posting patterns, inter-tweet intervals, burst detection, Fourier analysis of timing gaps

Content Processing: Mean embeddings from top-10 recent tweets per user

Class Imbalance Handling: Weighted training and threshold optimization

Setup

git clone <repository-url>
cd twitter-bot-detection

pip install -r requirements.txt

About

Machine learning system for detecting bot accounts using temporal patterns, tweet embeddings, and user metadata. Achieves the state-of-the-art 70% F1 score.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published