Skip to content

Manaro-Alpha/Yuna_MoCap_gym

Repository files navigation

Yuna-MoCap-Gym

About

This repo is an attempt to make a hexapod learn walking motion using Proximal Policy Optimisation and using Motion Capture data generated using a custom CPG controller. This project is inspired by legged_gym

Installation

  1. Create a new python virtual env with python 3.6, 3.7 or 3.8 (3.8 recommended)
  2. Install pytorch 1.10 with cuda-11.3:
    • pip3 install torch==1.10.0+cu113 torchvision==0.11.1+cu113 torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html
  3. Install Isaac Gym
    • Download and install Isaac Gym Preview 3 (Preview 2 will not work!) from https://developer.nvidia.com/isaac-gym
    • cd isaacgym/python && pip install -e .
    • Try running an example cd examples && python 1080_balls_of_solitude.py
    • For troubleshooting check docs isaacgym/docs/index.html)
  4. Install rsl_rl (PPO implementation)
  5. Install legged_gym
    • Clone this repository
    • cd legged_gym && pip install -e .

Usage

  • To generate MoCap data, run data_generator.py
  • To train yuna run python3 train.py --task=yuna
  • To test the trained policy run python3 test.py --task=yuna

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages