This project is intended to serve linear algebra methods, focusing on operations with vectors and matrices. It offers an easy-to-use interface to perform various operations on vectors and matrices.
package algebra;
public class ExampleLinearAlgebra {
public static void main(String[] args){
int[] v1 = {1, 2, 3};
int[] v2 = {1, 2, 3};
int[] v3 = LinearAlgebra.vectorAddition(v1, v2);
v3 = LinearAlgebra.vectorSubtraction(v1, v2);
v3 = LinearAlgebra.vectorScalarMultiplication(v3, 50);
double dotProd = LinearAlgebra.vectorsDotProduct(v1, v2);
int[] orthogonalv3 = LinearAlgebra.perpendicularVector(v3);
int[] crossProd = LinearAlgebra.crossProduct(v1, v2);
boolean arePerpendicular =
LinearAlgebra.vectorsArePerpendicular(v3,crossProd);
RealMatrix m1, m2, result;
// Initial matrix capacity
m1 = new RealMatrix(3, 3);
// Matrix 4x4 with random integer numbers
m2 = RealMatrix.random(4, 4);
// Adding Rows to the matrix
m1.addRow(new Number[]{1, 2, 3});
m1.addRow(new double[]{4, 6, 6});
m1.addRow(v1);
m1.addRow(1, v2);
m1.addColumn(1, array);
// Matrices operations
m1.add(m2);
RealMatrix m3 = LinearAlgebra.subtractMatrices(m1,m2);
m3 = LinearAlgebra.matrixMultiplication(m1, m2);
m3 = LinearAlgebra.matrixScalarMultiplication(m3, Math.PI);
double det = LinearAlgebra.matrixDeterminant(m3);
m3 = LinearAlgebra.matrixInverse(m3);
}
}
It is not suggested to use this project for critical work if efficiency and optimization is what you need, better and more optimized codes of your needings can be found. This project only has the intention to show the creator's passion for programming and math.