Skip to content

MichaelD1976/Python_Cheat_Sheets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Python & Dev Cheat Sheet Project

Overview

This project is a comprehensive reference guide for Python programming, data analysis, scripting, and project setup. It is designed to serve as a quick-access cheat sheet for developers, data scientists, and students, covering both core Python concepts and practical tools for day-to-day development.


Contents

1. Python Basics

  • Variables, data types, and operators
  • Control flow: if, for, while, break, continue
  • Functions: standard, lambda, *args, **kwargs, decorators
  • Object-Oriented Programming (OOP): classes, objects, inheritance, special methods

2. Data Analysis

  • Pandas: DataFrames, selection, filtering, aggregation
  • NumPy: arrays, mathematical operations, broadcasting
  • Datetime: parsing, formatting, timedelta operations
  • String & Regex: pattern matching, search, replace

3. Visualization

  • Basic plotting with matplotlib and seaborn
  • Plot customization: labels, titles, colors, styles

4. File & Data Handling

  • File I/O: reading/writing text, CSV, JSON
  • JSON parsing and API response handling
  • Flattening nested JSON into DataFrames

5. Project Setup & Development Tools

  • Typical project structure (src/, tests/, notebooks/, data/)
  • Virtual environments (venv) and dependencies (requirements.txt)
  • Git workflow: init, add, commit, push, branching
  • Docker basics: Dockerfile, build, run

6. Shell & Automation

  • PowerShell commands: navigation, file ops, process management, scripting
  • Networking commands and simple API calls

7. Advanced Python & Tips

  • List, set, dictionary, and generator comprehensions
  • Error handling: try/except/finally
  • Logging with logging module
  • Performance profiling: timeit, cProfile
  • Useful standard library modules: math, random, itertools, functools, os, sys, json

How to Use

  1. Clone the repository:
git clone <repo_url>
cd my_project
Create a virtual environment:

bash
Copy code
python -m venv .venv
.venv\Scripts\activate  # Windows
source .venv/bin/activate  # Linux/Mac
Install dependencies:

bash
Copy code
pip install -r requirements.txt
Open the Jupyter notebook:

bash
Copy code
jupyter notebook
Explore sections interactively and run examples.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published