This project is a comprehensive reference guide for Python programming, data analysis, scripting, and project setup. It is designed to serve as a quick-access cheat sheet for developers, data scientists, and students, covering both core Python concepts and practical tools for day-to-day development.
- Variables, data types, and operators
- Control flow:
if
,for
,while
,break
,continue
- Functions: standard, lambda,
*args
,**kwargs
, decorators - Object-Oriented Programming (OOP): classes, objects, inheritance, special methods
- Pandas: DataFrames, selection, filtering, aggregation
- NumPy: arrays, mathematical operations, broadcasting
- Datetime: parsing, formatting, timedelta operations
- String & Regex: pattern matching, search, replace
- Basic plotting with
matplotlib
andseaborn
- Plot customization: labels, titles, colors, styles
- File I/O: reading/writing text, CSV, JSON
- JSON parsing and API response handling
- Flattening nested JSON into DataFrames
- Typical project structure (
src/
,tests/
,notebooks/
,data/
) - Virtual environments (
venv
) and dependencies (requirements.txt
) - Git workflow:
init
,add
,commit
,push
, branching - Docker basics: Dockerfile, build, run
- PowerShell commands: navigation, file ops, process management, scripting
- Networking commands and simple API calls
- List, set, dictionary, and generator comprehensions
- Error handling:
try/except/finally
- Logging with
logging
module - Performance profiling:
timeit
,cProfile
- Useful standard library modules:
math
,random
,itertools
,functools
,os
,sys
,json
- Clone the repository:
git clone <repo_url>
cd my_project
Create a virtual environment:
bash
Copy code
python -m venv .venv
.venv\Scripts\activate # Windows
source .venv/bin/activate # Linux/Mac
Install dependencies:
bash
Copy code
pip install -r requirements.txt
Open the Jupyter notebook:
bash
Copy code
jupyter notebook
Explore sections interactively and run examples.