Skip to content

NoObMaster69000/Python-learning

Repository files navigation

๐Ÿ Python Learning Roadmap: From Basics to Advanced (Beginner โ†’ Pro)

Organized in logical progression โ€” each topic builds on the previous one. Includes what to learn, why it matters, and real-world use cases.


๐ŸŸข Level 1: Python Basics (Beginner)

Goal: Write simple scripts and understand syntax.

1. Getting Started

  • Installing Python (via Anaconda or official installer)
  • Running Python: IDLE, Jupyter, VS Code, terminal
  • print(), input(), comments

๐Ÿ’ก Use Case: Hello World, user interaction


2. Variables & Data Types

  • Variables (no declaration needed)
  • Basic types: int, float, str, bool, None
  • Type checking: type()
  • Type conversion: int("5"), str(3.14)

๐Ÿ’ก Use Case: Storing user input, calculations


3. Operators

  • Arithmetic: +, -, *, /, //, %, **
  • Comparison: ==, !=, >, <
  • Logical: and, or, not
  • Assignment: =, +=, -=

๐Ÿ’ก Use Case: Conditions, math operations


4. Control Flow

  • if, elif, else
  • Nested conditions
  • Ternary operator: x = "even" if num % 2 == 0 else "odd"

๐Ÿ’ก Use Case: Decision-making in programs


5. Loops

  • for loop: for i in range(5):
  • while loop: while x < 10:
  • break, continue, pass
  • Looping through strings, lists

๐Ÿ’ก Use Case: Processing lists, repeating tasks


6. Strings

  • String creation, quotes (', ", ''')
  • Indexing & slicing: s[0], s[1:4]
  • Methods: .upper(), .lower(), .split(), .join(), .strip()
  • f-strings: f"Hello {name}!"

๐Ÿ’ก Use Case: Text processing, formatting output


7. Data Structures

๐Ÿš€ This topic has been expanded into four detailed notebooks!

  • 7a. Lists []: The most common, general-purpose, and mutable collection.
  • 7b. Tuples (): Immutable collections, used for fixed data.
  • 7c. Sets {}: For storing unique items and performing mathematical set operations.
  • 7d. Dictionaries {}: For storing data as key-value pairs.

๐Ÿ“Œ Master: list comprehensions, dictionary methods, set operations, and when to use each type.


๐ŸŸก Level 2: Functions & Modularity (Intermediate)

8. Functions

  • Defining: def greet(name):
  • Parameters & arguments
  • return vs print
  • Default arguments: def func(x=5):
  • Keyword arguments: func(name="Ali", age=25)

๐Ÿ’ก Use Case: Reusable code blocks


9. Scope & Namespaces

  • Local vs Global variables
  • global keyword
  • LEGB rule (Local โ†’ Enclosing โ†’ Global โ†’ Built-in)

โš ๏ธ Avoid global variables when possible


10. Built-in Functions & Modules

  • Common functions: len(), sum(), min(), max(), sorted(), enumerate(), zip()
  • Importing modules: import math, from datetime import datetime
  • Standard library: os, sys, json, random

๐Ÿ’ก Use Case: File handling, date/time, randomness


11. File Handling

  • Reading/writing text files: open("file.txt", "r")
  • Context manager: with open(...) as f:
  • Working with JSON: json.load(), json.dump()

๐Ÿ’ก Use Case: Save/load data, config files


12. Error Handling

  • try, except, else, finally
  • Handling specific errors: ValueError, FileNotFoundError
  • Raising errors: raise ValueError("Invalid input")

๐Ÿ’ก Use Case: Make programs robust


๐ŸŸ  Level 3: Object-Oriented Programming (OOP) (Intermediate โ†’ Advanced)

13. Classes & Objects

  • class Person:, __init__() constructor
  • Creating objects: p = Person("Ali")
  • Instance variables & methods
  • self explained

๐Ÿ’ก Use Case: Modeling real-world entities (User, Car, Document)


14. OOP Principles

Concept Explanation Example
Encapsulation Hide data using _private or __very_private self.__salary
Inheritance Child class inherits from parent class Student(Person):
Polymorphism Same method, different behavior student.walk() vs teacher.walk()
Abstraction Hide complex logic Use methods without knowing internals

๐Ÿ’ก Use Case: Code reuse, clean architecture


15. Special (Dunder) Methods

  • __str__() โ†’ str(obj)
  • __repr__() โ†’ debug representation
  • __len__() โ†’ len(obj)
  • __add__() โ†’ obj1 + obj2

๐Ÿ’ก Make your classes behave like built-in types


16. Properties & Getters/Setters

  • Use @property to control access
  • Avoid direct attribute access
@property
def age(self):
    return self._age

๐Ÿ’ก Use Case: Validation, computed properties


๐Ÿ”ด Level 4: Advanced Python (Advanced)

17. Modules & Packages

  • Creating your own modules (mymodule.py)
  • __init__.py for packages
  • Installing packages: pip install requests

๐Ÿ’ก Use Case: Organize large projects


18. Functional Programming

  • First-class functions: pass functions as arguments
  • lambda: square = lambda x: x**2
  • map(), filter(), reduce()
  • List/dict/set comprehensions (advanced)

๐Ÿ’ก Use Case: Data transformation, clean code


19. Iterators & Generators

  • iter(), next()
  • yield vs return
  • Memory-efficient: def fib(): yield ...

๐Ÿ’ก Use Case: Large datasets, streaming data


20. Decorators

  • @decorator syntax
  • Create your own: timing, logging
  • Accept arguments: @retry(attempts=3)
def timer(func):
    def wrapper(*args, **kwargs):
        start = time.time()
        result = func(*args, **kwargs)
        print(f"Time: {time.time()-start}s")
        return result
    return wrapper

๐Ÿ’ก Use Case: Logging, caching, authentication


21. Context Managers

  • with open() as f:
  • Create your own: __enter__, __exit__
  • @contextmanager decorator

๐Ÿ’ก Use Case: Safe resource handling (files, DB connections)


22. Exception Customization

  • Define custom exceptions:
    class InsufficientFundsError(Exception):
        pass

๐Ÿ’ก Use Case: Domain-specific errors


23. Working with Libraries

  • requests: HTTP calls
  • json, csv: Data formats
  • os, shutil: File system
  • datetime: Date/time
  • collections: defaultdict, Counter, namedtuple

๐Ÿ’ก Use Case: Real-world scripting and automation


24. Packaging a Project

  • Project structure (pyproject.toml, src/)
  • Building (build package)
  • Uploading (twine package)

๐Ÿ’ก Use Case: Distribute your code for others to pip install


25. Virtual Environments & pip

  • python -m venv myenv
  • source myenv/bin/activate (Linux/Mac) or myenv\Scripts\activate (Windows)
  • pip install, pip freeze > requirements.txt

๐Ÿ’ก Use Case: Isolate project dependencies


๐Ÿ”ฎ Level 5: Next Steps (After Mastery)

26. Popular Libraries to Explore

Library Purpose
numpy Numerical computing
pandas Data analysis
matplotlib/seaborn Data visualization
requests Web APIs
flask/fastapi Web development
pytest Testing
jupyter Interactive notebooks

27. Best Practices

  • PEP 8 (code style)
  • Docstrings: """Explain function here"""
  • Type hints: def func(x: int) -> str:
  • Writing clean, readable code
  • Unit testing with unittest or pytest

๐Ÿš€ A detailed notebook for this topic, 27_Best_Practices.ipynb, is available in the 05_Next_Steps folder!


28. Project Ideas to Practice

  1. To-Do List App (CLI) โ†’ Use lists, files
  2. Contact Book โ†’ Use dictionaries, JSON
  3. Calculator โ†’ Functions, error handling
  4. Web Scraper โ†’ requests, BeautifulSoup
  5. Blog System โ†’ Classes, file handling
  6. Quiz Game โ†’ OOP, files, loops

๐Ÿ“š Learning Resources

Resource Link
Official Python Docs https://docs.python.org
Real Python (Tutorials) https://realpython.com
Automate the Boring Stuff https://automatetheboringstuff.com
Corey Schafer (YouTube) https://youtube.com/c/Coreyms
W3Schools Python https://w3schools.com/python
LeetCode / HackerRank Practice coding problems

๐Ÿ—บ๏ธ Learning Plan (8-Week Suggestion)

Week Focus
1-2 Basics: variables, loops, strings, lists
3 Functions, file handling, error handling
4 Dictionaries, sets, comprehensions
5 OOP: classes, inheritance, methods
6 Advanced: decorators, generators, context managers
7 Projects & libraries (requests, json, os)
8 Virtual envs, best practices, type hints

About

Python Learning

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •